528 research outputs found
The Factory and the Beehive. II. Activity and Rotation is Praesepe and the Hyades
Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star\u27s lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at 600 Myr. We have compiled a sample of 720 spectra—more than half of which are new observations—for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have also collected rotation periods (P rot) for 135 Praesepe members and 87 Hyads. To compare Hα emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number Ro , we first calculate an expanded set of χ values, with which we can obtain the Hα to bolometric luminosity ratio, L Hα/L bol, even when spectra are not flux-calibrated and/or stars lack reliable distances. Our χ values cover a broader range of stellar masses and colors (roughly equivalent to spectral types from K0 to M9), and exhibit better agreement between independent calculations, than existing values. Unlike previous authors, we find no difference between the two clusters in their Hα equivalent width or L Hα/L bol distributions, and therefore take the merged Hα and P rot data to be representative of 600 Myr old stars. Our analysis shows that Hα activity in these stars is saturated for . Above that value activity declines as a power-law with slope , before dropping off rapidly at Ro 0.4. These data provide a useful anchor for calibrating the age-activity-rotation relation beyond 600 Myr
Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device
Neurobehavioral data from intact, decerebrate, and neonatal rats, suggests that the reticular formation provides
a brainstem substrate for action selection in the vertebrate central nervous system. In this article, Kilmer,
McCulloch and Blum’s (1969, 1997) landmark reticular formation model is described and re-evaluated, both in
simulation and, for the first time, as a mobile robot controller. Particular model configurations are found to
provide effective action selection mechanisms in a robot survival task using either simulated or physical robots.
The model’s competence is dependent on the organization of afferents from model sensory systems, and a genetic
algorithm search identified a class of afferent configurations which have long survival times. The results support
our proposal that the reticular formation evolved to provide effective arbitration between innate behaviors
and, with the forebrain basal ganglia, may constitute the integrative, ’centrencephalic’ core of vertebrate brain
architecture. Additionally, the results demonstrate that the Kilmer et al. model provides an alternative form of
robot controller to those usually considered in the adaptive behavior literature
Information Transfer in Gonadotropin-releasing Hormone (GnRH) Signaling: extracellular signal-regulated kinase (ERK)-mediated feedback loops control hormone sensing
The computation model used in the study of GnRH signalling which was used to generate the data appearing in this paper is in ORE at http://hdl.handle.net/10871/27844Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.This work was supported by a Biochemical and Biophysical Science Research Council award (BBSRC BB/J014699/1; to C. A. M. and K. T.-A.)
On the criticality of inferred models
Advanced inference techniques allow one to reconstruct the pattern of
interaction from high dimensional data sets. We focus here on the statistical
properties of inferred models and argue that inference procedures are likely to
yield models which are close to a phase transition. On one side, we show that
the reparameterization invariant metrics in the space of probability
distributions of these models (the Fisher Information) is directly related to
the model's susceptibility. As a result, distinguishable models tend to
accumulate close to critical points, where the susceptibility diverges in
infinite systems. On the other, this region is the one where the estimate of
inferred parameters is most stable. In order to illustrate these points, we
discuss inference of interacting point processes with application to financial
data and show that sensible choices of observation time-scales naturally yield
models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA
PRIVATE SAVINGS IN TRANSITION ECONOMIES: ARE THERE TERMS OF TRADE SHOCKS?
The paper examines the impact of terms of trade shocks on private savings in the transition economies after accounting for the effect of other determinants. Economic agents in the transition economies are subject to tight credit constraints which are more pronounced during bad state of nature. Thus, adverse shocks to commodity prices in the world market can force them to reduce savings by a larger amount than they would otherwise have. Empirical analysis using a dynamic panel model and data from twenty one transition economies confirm that most of the determinants of savings identified in the literature also apply to the transition economies. Favorable movements in both the permanent and transitory components of the terms of trade have a significant positive impact on private savings with transitory movements having a larger impact than the permanent component. This reflects the lack of access to foreign borrowing that many of the transition economies have faced during the last decade. Although the impact of terms of trade shocks are found to be asymmetric, the magnitude of the impact appears to be small. The results are robust for alternative estimators, determinants, and country groupings.http://deepblue.lib.umich.edu/bitstream/2027.42/39958/3/wp572.pd
The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades
Open clusters are collections of stars with a single, well-determined age,
and can be used to investigate the connections between angular-momentum
evolution and magnetic activity over a star's lifetime. We present the results
of a comparative study of the relationship between stellar rotation and
activity in two benchmark open clusters: Praesepe and the Hyades. As they have
the same age and roughly solar metallicity, these clusters serve as an ideal
laboratory for testing the agreement between theoretical and empirical
rotation-activity relations at 600 Myr. We have compiled a sample of
720 spectra --- more than half of which are new observations --- for 516
high-confidence members of Praesepe; we have also obtained 139 new spectra for
130 high-confidence Hyads. We have collected rotation periods () for
135 Praesepe members and 87 Hyads. To compare emission, an indicator
of chromospheric activity, as a function of color, mass, and Rossby number
, we first calculate an expanded set of values, with which we can
obtain the to bolometric luminosity ratio, ,
even when spectra are not flux-calibrated and/or stars lack reliable distances.
Our values cover a broader range of stellar masses and colors (roughly
equivalent to spectral types from K0 to M9), and exhibit better agreement
between independent calculations, than existing values. We find no difference
between the two clusters in their equivalent width or
distributions, and therefore take the merged
and data to be representative of 600-Myr-old stars. Our analysis
shows that activity in these stars is saturated for
. Above that value activity declines as a
power-law with slope , before dropping off rapidly
at ...Comment: 17 pages, 15 figures, Accepted by Ap
A new rotating test facility for the experimental characterisation of shaft seals
Turbomachinery shaft seals suffer from rubs caused by thermal growth, assembly misalignment and rotor dynamic vibration at engine start-up and shut-down. Rubs are detrimental to performance, leading to a decrease in overall efficiency and costly corrective maintenance. In recent years, compliant seals have been developed, allowing for variable clearances and a reduced frequency of seal rubs. The design goal for compliant seals is therefore, to maintain a tight clearance between rotating and non-rotating parts, throughout the transient conditions experienced in engines. This paper presents the design of a new high-speed rotating test facility developed for the performance characterisation of turbine shaft seals. The rig features a 254 mm diameter rotor, capable of rotating at speeds of up to 15,000 rpm (equivalent to rotor surface speeds up to 200 m/s). The maximum pressure difference across a seal is 3.5 bar. In the first experimental campaign, the performance of a labyrinth seal was investigated. The rotordynamic coefficients of the seal were calculated by exciting the casing with an electromagnetic shaker. The leakage performance, direct and cross-coupled seal stiffnesses and effective damping coefficients are determined.</p
Emerging Themes from the ESA Symposium Entitled “Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels”
Pollinator populations are declining (Biesmeijer et al., 2006; Brodschneider et al., 2018; Cameron et al., 2011; Goulson, Lye, & Darvill, 2008; Kulhanek et al., 2017; National Research Council, 2007; Oldroyd, 2007), and both anecdotal and experimental evidence suggest that limited access to high quality forage might play a role (Carvell, Meek, Pywell, Goulson, & Nowakowski, 2007; Deepa et al., 2017; Goulson, Nicholls, Botias, & Rotheray, 2015; Potts et al., 2003, 2010; Vanbergen & The Insect Pollinators Initiative, 2013; Vaudo, Tooker, Grozinger, & Patch, 2015; Woodard, 2017). Multiple researchers are earnestly addressing this topic in a diverse array of insect-pollinator systems. As research continues to be published, increased communication among scientists studying the topic of nutrition is essential for improving pollinator health
- …