4,062 research outputs found

    The impact of a network split on cascading failure processes

    Full text link
    Cascading failure models are typically used to capture the phenomenon where failures possibly trigger further failures in succession, causing knock-on effects. In many networks this ultimately leads to a disintegrated network where the failure propagation continues independently across the various components. In order to gain insight in the impact of network splitting on cascading failure processes, we extend a well-established cascading failure model for which the number of failures obeys a power-law distribution. We assume that a single line failure immediately splits the network in two components, and examine its effect on the power-law exponent. The results provide valuable qualitative insights that are crucial first steps towards understanding more complex network splitting scenarios

    Energy spectra of metastable oxygen atoms produced by electron impact dissociation of O2

    Get PDF
    Kinetic energies of metastable oxygen atoms formed by electron impact dissociation of oxygen and measured in time of flight experimen

    Excitation of the metastable E(3 Sigma g plus) state of N2 by electron impact

    Get PDF
    The contribution of the N2(E(3 Sigma g plus)) state to the total metastable excitation function of N2 assessed on the basis of time-of-flight studies of metastable nitrogen molecules. The cross section for electron impact excitation state was determined in the domain of the resonance form threshold (11.87 eV) to an energy of about 13 eV. The maximum value of the cross section was found to be (7.0 + or - 4.0) x 10 to the -18th power sq cm at an energy of 12.2 eV. The measurement was made absolute by using the previously determined yield of the metastable detector, the lifetime of the E state, and by eliminating the energy spread in the electron beam from the raw data. The half-width (FWHM) of the resonance-like excitation function near threshold was found to be about 0.4 eV. No substantial evidence was obtained from the present data for the presence of the nonresonant part of the excitation function for the state studied

    Production of CO(a 3 Pi) and other metastable fragments by electron impact dissociation of CO2

    Get PDF
    Dissociative excitation of CO(a 3 Pi) and other metastable fragments such as O(5S) produced by electron impact on CO

    Asymptotically Optimal Load Balancing Topologies

    Full text link
    We consider a system of NN servers inter-connected by some underlying graph topology GNG_N. Tasks arrive at the various servers as independent Poisson processes of rate λ\lambda. Each incoming task is irrevocably assigned to whichever server has the smallest number of tasks among the one where it appears and its neighbors in GNG_N. Tasks have unit-mean exponential service times and leave the system upon service completion. The above model has been extensively investigated in the case GNG_N is a clique. Since the servers are exchangeable in that case, the queue length process is quite tractable, and it has been proved that for any λ<1\lambda < 1, the fraction of servers with two or more tasks vanishes in the limit as NN \to \infty. For an arbitrary graph GNG_N, the lack of exchangeability severely complicates the analysis, and the queue length process tends to be worse than for a clique. Accordingly, a graph GNG_N is said to be NN-optimal or N\sqrt{N}-optimal when the occupancy process on GNG_N is equivalent to that on a clique on an NN-scale or N\sqrt{N}-scale, respectively. We prove that if GNG_N is an Erd\H{o}s-R\'enyi random graph with average degree d(N)d(N), then it is with high probability NN-optimal and N\sqrt{N}-optimal if d(N)d(N) \to \infty and d(N)/(Nlog(N))d(N) / (\sqrt{N} \log(N)) \to \infty as NN \to \infty, respectively. This demonstrates that optimality can be maintained at NN-scale and N\sqrt{N}-scale while reducing the number of connections by nearly a factor NN and N/log(N)\sqrt{N} / \log(N) compared to a clique, provided the topology is suitably random. It is further shown that if GNG_N contains Θ(N)\Theta(N) bounded-degree nodes, then it cannot be NN-optimal. In addition, we establish that an arbitrary graph GNG_N is NN-optimal when its minimum degree is No(N)N - o(N), and may not be NN-optimal even when its minimum degree is cN+o(N)c N + o(N) for any 0<c<1/20 < c < 1/2.Comment: A few relevant results from arXiv:1612.00723 are included for convenienc

    Mixing Properties of CSMA Networks on Partite Graphs

    Get PDF
    We consider a stylized stochastic model for a wireless CSMA network. Experimental results in prior studies indicate that the model provides remarkably accurate throughput estimates for IEEE 802.11 systems. In particular, the model offers an explanation for the severe spatial unfairness in throughputs observed in such networks with asymmetric interference conditions. Even in symmetric scenarios, however, it may take a long time for the activity process to move between dominant states, giving rise to potential starvation issues. In order to gain insight in the transient throughput characteristics and associated starvation effects, we examine in the present paper the behavior of the transition time between dominant activity states. We focus on partite interference graphs, and establish how the magnitude of the transition time scales with the activation rate and the sizes of the various network components. We also prove that in several cases the scaled transition time has an asymptotically exponential distribution as the activation rate grows large, and point out interesting connections with related exponentiality results for rare events and meta-stability phenomena in statistical physics. In addition, we investigate the convergence rate to equilibrium of the activity process in terms of mixing times.Comment: Valuetools, 6th International Conference on Performance Evaluation Methodologies and Tools, October 9-12, 2012, Carg\`ese, Franc

    Slow transitions, slow mixing and starvation in dense random-access networks

    Get PDF
    We consider dense wireless random-access networks, modeled as systems of particles with hard-core interaction. The particles represent the network users that try to become active after an exponential back-off time, and stay active for an exponential transmission time. Due to wireless interference, active users prevent other nearby users from simultaneous activity, which we describe as hard-core interaction on a conflict graph. We show that dense networks with aggressive back-off schemes lead to extremely slow transitions between dominant states, and inevitably cause long mixing times and starvation effects.Comment: 29 pages, 5 figure

    Achievable Performance in Product-Form Networks

    Full text link
    We characterize the achievable range of performance measures in product-form networks where one or more system parameters can be freely set by a network operator. Given a product-form network and a set of configurable parameters, we identify which performance measures can be controlled and which target values can be attained. We also discuss an online optimization algorithm, which allows a network operator to set the system parameters so as to achieve target performance metrics. In some cases, the algorithm can be implemented in a distributed fashion, of which we give several examples. Finally, we give conditions that guarantee convergence of the algorithm, under the assumption that the target performance metrics are within the achievable range.Comment: 50th Annual Allerton Conference on Communication, Control and Computing - 201
    corecore