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Abstract 

Kinetic energies of metastable 0 atoms formed in dissociative excitation 

o f  O2 were measured i n  a time of f l igh t  experiment, 

(9.74 ell) as well as high lying states near the ionization limit of O(l3.6 eV) 

were detected by means of  Auger ejection o f  secondary electrons from a Cu-Be 

Metastable O ( 5 S u )  atoms 

surface. 

maxima near 0.3 and 2 eV, 

from the measured energy spectra and time-resolved excitation functions. 

excitation function for the direct  exc-itation of the O(%O) s t a t e  had a threshold 

of (14.3 - + 0,2) eV which i s  equal t o  the minimum energy for  dissociatively exciting 

the 0g5S0) state ,  

angular variation of dissociation products, the molecular s ta te  reached near 14-3 

eV was identdfied as a nu s ta te  with a probable multiplicity o f  3, 

states reached at. higher energies were not  identified, 

The energy spectra o f  metastable fragments showed distinct structure with 

Repulsfve potential energy curves o f  O2 were constructed 

The 

Using selection Pules and symmetry arguments concerning the 

Other molecular 

I t  seems, however, t h a t  

there was a sizeable contribution due t o  0 atoms in h i g h  lying Rydberg states 

excited in dissociative excitation. The differential cross section for the direct  

formation of O(5S0)  was found  t o  be da/ds2 = 1 x I O - I g  cm2/sterad within a factor 

o f  two a t  an electron energy of 30 eV and a n  angle o f  90’ with respect t o  the ellectr-o 

beam. Several atmospheri c appl I catl ons o f  the measurements concerni ng the heati ng 

o f  the atmosphere, radiatfve transfer of resonance radjation and chemical reactions 

are mentioned briefly, 



o f  ~ ~ ~ ~ ~ ~ ~ a r  gases play an i m ~ o ~ t a ~ t  POI eathng of‘ the atmos- 

(e,g, i n  auro as) and i n  radfative t r a n s f e ~ ~  ~~~~~~~h t h i s  has 

y not been considered i n  detail as yet ,  Our m e a ~ ~ ~ e ~ e ~ t ~  0.0: e ~ ~ ~ g y  

t f ng  from dlssociatfon o f  O2 fwdfcate t h a t  

e formed w i t h  energies general % y  muck above ~ h e ~ ~ ~ I  e Energy 

spectra o f  met s t a b l e  atoms also need t o  be ~ n ~ ~ n  in absolute erms sectfoa 

e ~ e ~ m ~ n ~ t ~ o n ~  of long-lived emissions excited I n  the  dfssoefat9sn process, 

a t i sn  o f  moleculap  oxy^@^ f s  o f  ~~~~~~~~a~ -interest, sfncce 

metastable oxygen atoms play a dominant role -ips the earth’s ~ t ~ s s ~ h e r ~ ,  We 

s tudied  the dissociative excftatfon o f  h i g h  ly3ng metastable s ta tes  o f  the 

0 atom, i n  particu a r  the O(5S) s ta te ,  Th is  s ta te  f s  readfly excited wf 

hfgh efficiency, 

and we are presently working on thefr d ~ s ~ o c 9 ~ ~ ~ ~ ~  exef ta t ion,  

high l y i n g  metastables and Rydberg a t o m  

Low lyin metastable oxygen atoms are mope dfff~eeel t  t o  det 

In o w  ~~~~~~t~~~ 

ectron beam d.irection, With slight r n ~ ~ f ~ f ~ a t ~ ~ ~ ~ ~  o w  a ~ ~ ~ ~ ~ t ~ s  i s  capable 

asuring a n g ~ l a ~  variations, Thds topfe %sf11 be ~ n ~ ~ ~ ~ ~ ~ ~ t ~ ~  i n  the feature, 

The technique used involved the pulsed ~ ~ ~ d ~ ~ ~ i ~ ~  o f  metastables and 

ne1 analysts o f  the%” time o f  flfght spree P$ and has already been 

described i n  detail  *2 Only the sal dent features o f  the ~~~~~~t~~ are ~ @ ~ % ~ ~ ~ ~ ~  

I1 e ~ X ~ ~ ~ ~ ~ ~ ~ ~ A ~  DETAILS 

The ~ x p e ~ i m e ~ t ~ l  system has been descrfbed sslsewhe~e, 9 I t  suf f fees t o  

 ti^^ the main featu 
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stable oxygen atoms were produced by eleeetvon +impact. ~ ~ ~ s o ~ f ~ t i o n  

o f  02' The electporn gun was p lsed -in 0rdfY t o  m ~ n ~ ~ ~ ~  the traansft tfme 0 

metastables t o  the d le tec to~  and t h u s  obta in  t ime s f  

r a p e n t s  Beam pulses f t R  repetf -e% 889 

04!sec, The duty cycle o the gun was thus 1% and the average 

as  Integrated by an e l e c % ~ o m ~ ~ ~ ~  was about 'OCP7AW, 

agments were detected under an angle o f  90@ with respect 

t o  the beam dl'rectfon by a nude Cu-Be multfplfer whose f f r s t  dynode 

away f r ~ m  the center o the colls's-s'on chamber, The so1fd angle s ~ b % e ~ d ~ d  by 

the multf~l  . 9 e ~  entrance ape ture was about 0,05 sterad, The e f f e e t f v e  s c ~ t ~ e ~ ~ n ~  

n g t h  fn the co lfsion chamber was about  O,5cm, The col8fsfsn chamber con- 

taInSng the O2 g s a t  an unf fom pressure ( -  10-4 Tor.:) represented a d f f fuse  

gas SQUPCE!, 

Metastables wl'th excitatfon energfes =in excess o f  the work ~ u n e ~ s ' o n  

f the ~ ~ l t ~ p ~ . 9 e ~  dynodes (4 - 4 ev> could Ifberate secondary electrons from 

the mealtiplfer dynodes by means o f  the Auger pp~ocess,~ Therefore the 3s5So state 

and hfgh 9ys"ng Rydberg states o f  atomfc oxygen eould be detected, 

t e res t fng  t o  note t h a t  metastable oxygen m ~ ~ ~ ~ ~ 8 e ~  were never de eeted fn this 

P 

er-s'ment, Total counts'ng rates a t  the detector ~ n % e ~ ~ ~ t f n ~  over- a1 1 m e t ~ ~ ~ ~ ~ l ~  

va t@ w$ thout  t ~ ~ n s s ' t  times were o f  the order o f  

O2 Bn the c~ll.9si0n chamber was about O,S/see, 

f g h t  spectra o f  ~ ~ ~ a ~ ~ ~ ~ ~ e  atoms (Flg. 3 and 4) were obtained 

w f t h  a m u ~ ~ s ' w c ~ a n ~ e ~  analyze 

go 7 )  or w i t h  a sfngle channel ~ n ~ l ~ ~ e ~  sf ~a~~~~~~ channel w1dt.h and p o s f t l o n  

(Fig, q0 In  the Pf st method (Ffg, 1 and 39$ the data neve taken ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ y ~  

the stat1st" ls  were better and the drffts  neve ~~~~~~~~~~~ The second %et&och 
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~ e t a $ t ~ ~ l e ~  w 9 t R  selected t ransf t  ttmes, t Q e c  k%vmetBc enes"gfesp by the p ~ o ~ e ~  

choice o f  the ga t ing  window posits 'on and width, I n  t h j s  case, the outpu t  o f  

a ratemeter pa allel  to  the counter i n  F i g o  2 was applqed t o  an X-Y ~ e c ~ ~ ~ e r  

together w i t h  the energy defining voltage o f  the electron gun, 

111, RESULTS 

A, Energy S,peetra 

light spectra o f  metastable 0 atoms are shown f n  F1g9 3 and 

fnally these spectra (Flg, 4') were sbt&imed w i th  the sjngle 

channel analyzer sketched i n  Fig, 2, The m ~ ~ t ~ ~ ~ h a ~ n ~ ~  anal.yzer system (Fig, 1 )  

yieldtng the spectra i n  Ftg,  3 was added a t  a later date  fn order t o  ~ ~ c ~ ~ ~ t ~ ~ e  

the data  tak ing  and t o  improve the overa91 accuracyo I t  t s  seen t h a t  the 

~ ~ ~ e e m e n t  between the da ta  i n  F i g ,  3 and Ffg, 4 $s very good 1f one takes into 

tion tn Fig, 4, A % $  cu$ves were due  t e  ~ e ~ ~ t f ~ e ~ y  

Past  6 metastables, Molecular oxygen m ~ t a ~ t a ~ ~ e s  would have had much 7 0 n g w  

transit tfmes and a detailed search for them never revealed t h d r  presence in o w  

e ~ ~ ~ ~ ~ m e n ~ ~  

4 



and we f i n d  t h a t  

Prom this expression we see t h a t  the energy spectrum Qasfde from 

f f fcant  constant factor) was given by 

where E i s  the kinetic energy per metastable ~ r ~ ~ ~ e ~ ~ e s ~  M the  mass of 0, d the 

difstance between excitation regfon and metas able detector a d t the metastable 

trans =i .$ time 

In the actual calculation o f  energy s p e c t ~ a ~  the tfme o f  ~ l ~ ~ h t  dfs-  

trfbutl’ons were ffrst multiplied by t3 according t o  equ, (3 )  and the p ~ ~ d ~ ~ ~  

was plotted as a function o f  the en rgy c 0  

e n e ~ ~ y  spectra a e shown i n  F i g ,  5 ,  The low energy ~~~t~~~ fn Fig ,  5 ~ ~ ~ ~ e ~ p ~ ~ d ~  

i n  Fig ,  3, the broad peak ~ 9 t h  a m ~ x ~ ~ ~ m  near 2 el! to the ~ ~ ~ b ~ ~ ~ d  

Computer plots  of the r ~ e s ~ ~ ~ ~ ~ ~  

structures 2, 3,  and 4, and str cture 5 shows up as  a smaUl8 pedestal E,:+ the hfgher 

ergfees 9n Pfg, 5, The contan =in the energy spectra below the  ~~~~~~~~~~ 
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paint a t  about 0, was caused by a very small constant b a c ~ ~ ~ o ~ n ~  In  the! 

butions,  Clearly, even the sm 9 91 est ~ a ~ ~ ~ r ~ ~ n ~  w i  19 cause 

a t o  diverge e ~ e n t ~ a l ~ y  a t  the lowest energies ~ ~ ~ n ~ ~ s ~  

transit times] acco ng t o  equ. (3 ) ,  In order t o  assess this $ a c ~ ~ ~ o ~ n ~  prop 

da ta  e ~ t e n d ~ n g  t o  v ans i t  times and eontafnjng good s t a t f s t f c s  were 

taken, T h i s  enabled one t o  subtract any b a ~ ~ ~ p o ~ n ~ ~  An erne~gy d.Pstr4bu 

ned in th i s  way a t  20 eV i s  shown in Fig, 6, It. f s  clear from t h f s  f i g u ~ e  

gy spectrum reaches a maximum somewhat below 0,s eM and a constant 

Only the 'lowest energy portfow o f  the spect~a i n  

i g ,  5 was affected by the small bac~grown~ i n  the  time of f l i g h t  d ~ s t ~ I ~ u t ~ ~ n  

value a t  zero kinetic energy, 

In a r r i ~ i n ¶  a t  the energy spectra i n  F fg ,  5 and Flg, 6, the velocfty 

d ~ s t ~ ~ ~ ~ t i ~ n  o f  the parent oxygen molecules and metastable recoil after the 

@lee t~on  collision were neglected. I t  has been shown2 t h a t  metast $le pecofil for  

use gas source should be rather neglfgible, especfally I n  the pvesent 

e x p e ~ ~ m e n t ~  where metastable energies are above thermal I t  was estfmated %h 

that  velocity distribution o f  the pare t moleeules could cause a ~ ~ o ~ ~ ~ n ~ n g  l a 4  t h  

energy and t4me of f l i gh t  spectra o f  the order o f  30%, Some f u r % h e ~  b o  

so caused by the necessarily PinIte 

Ise, T h i s  f i n i t e  beam pulse i d t h  a f f e c t s  the h f g h  energy parat s f  the spectra 

more t h a n  the low energy part whereas the twerse is  true f o r  the effec 

ent moleeules, Ht was deefded, h ~ ~ @ ~ ~ ~ ~  t h a t  f o r  the 

s paper no addltl'ona phys~eal f n s t g h t  would be g ined by illrsfng 

B,  #l"netP"c Energy Effects on the Secondary Electron Weld 

As long as the metastable ~ ~ a g m e n t  energy ~~~~~~e~ below the work 

6 



unctlon o f  the Cu-Be multiplier dynodes ($I 2 4 eV), there was no nay ln 

whi e& seconda electrons could be ejected by vfrteae o f  the k9”netic energy 

stables, E t  i s  seen in Fig, 5 and F i g o  6 t h a t  the maln part o f  

the energy spect l s  well below 4 eV, Even as the kfnetie energy increases 

t o  several eV above the work function, the kinetic ys”eld y k j n  can be expected 

t o  be small compared w i t h  the yield ypot f o r  the ejectfon oY secondary electrons 

due t o  the potentl’al (excitation) energy o f  the metastables.& HoweverB the 

problem remains t h a t  the yield yPot Stself may depend on t he  kfnetie energy 

o f  the metast bles both below and above the work func t fon ,  I f  t & j s  i s  “indeed 

the case then the measured spectra would be distorted by the energy dependence 

o f  ypoto 

electron yield o f  rare gas ions w i t h  energfes above 5 eV on ~ n ~ s ~ e ~  surfaces 

show some energy dependence o f  the yield, 

linearly t o  zero energy, then the variation o f  the yleld i n  the energy range 0 t o  

5 eM should indeed be small. 

is v a l l d  and whether I t  applies t o  metastable oxygen atoms on a ~ o n ~ a m ~ n ~ ~ e d  

Cude surface, 

we have assumed a constant yield f o r  a l l  metastable kinetic energles jvs question, 

I t  i s  t o  be noted t h a t  Hagstrum’s m ~ a s ~ r e m e ~ ~ s ~  o f  the secondary 

I f  h f s  m ~ ~ s ~ ~ e ~ e ~ ~ ~  are extrapolated 

B u t  =it 9”s uncertafn whether such an e x ~ r a p ~ l ~ ~ l o ~  

Sl’nce there does not seem t o  be any deffnfte answer t o  this pr 

C, ExcftatSon Functions 

~ u r t h e r  information about the process o f  dissscfatlve exef 

be obtained by monitoring excl” tation f ~ n c t j ~ n s  for the ~~~d~~~~~~ o f  m e ~ ~ ~ t ~ b ~ e s  

1’th selected kinetic energiest Figure 7 shows exe$tation functions corres- 

 ond din^ t o  the two dis t inct  features a t  hfgher and lower k i n e t i c  energies in 

Pfg, 4 and F g o  5* 

less ~ ~ e r g e t 3 s :  por t ion  o f  metastables, has a t h ~ ~ ~ ~ ~ ~ ~  o f  (.S403 -. + 0,2) eV, T h i s  

Excitation funct ion A t n  F i g e  7,  wh9eh cov~espsnds t o  the 



i t h i n  limfts o error w i t h  the minimum energy ( 

dissociatively exciting the metastable O(3s5S0) s t  Y 

is  9.2 eV, 

distinction to  thisD cu ve B i n  Fig,  7, hich r e ~ r e s e n t  

fraction o f  metastables, has a highe lyfng threshold near 21 eV, shows a break 

Curve A i n  i g ,  7 remains constant i or ene~gi@s 

39 el!, and reaches a maximum (not shown) somewhat above 100 eV, The 

Smpl ications o f  the structure i n  the energy spectra and excitation funetfons are 

discussed i n  the next section, 

D. Absolute Crass Sections -~ 
Metastable oxygen atoms were produced w i t h  relatively large efficiencies. 

I t  was possible t o  estimate the absolute cross section for  production of O(%) 

atoms by integrating the signal over structure A l’n Fig,  4 from about 15 t o  55 

usec using the single channel analyzer (Fig,  2) and monitoring the resulting 

excitation function (curve A i n  Fig,  7) .  

The counting rate  a t  t h e  metastable detector was given by 

where J b  Is the beam current, e the electronic charge, n the 

ve scattering length o f  the co l ision chamber, BQ the 

d e n ~ i t y ~  R the 

by the detector a t  the center o 

f o r  O(%) atoms on CwBeB and du/ 

ion chamber, ym 

ferentfal  cro 

spect t o  the electron 

ere known rathe 

As will be discussed else here, a value o f  y, - 8, 

O(%) atoms w i t h i n  a facto o f  two by comparing sec 
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metastable atoms and molec Ies, Thhfs y"u"e?lds a cross sectfon sP 



lv(,i2 and the energy spectra dN/dE (normalized to  the same maximum h e i g h t  as 

I y O l 2 )  i s  evident I n  F ig .  8, 

holds near threshold and that the wave functions appropriate for  the repulsive 

curves can be closely approximated by 6-functionso7 

I t  was assumed that the Franck-Condon principle 

There can be l i t t l e  doubt that  the low energy spectrum leading t o  curve 

A i n  F ig .  8 corresponds to the O(5S) s t a t e  alone because o f  the observed 

threshold near 14.3 eV and the fact  that  the energy spectrum (Fig.  6 )  extends 

down to zero kinetic energies having a f i n i t e  value there. 

electron energies above threshold the O ( % )  s t a t e  seems to  be produced directly 

w i t h  a rather n e g l i g i b l e  cascade contribution, The reason for  this is  that  the 

low energy spectra (Figg .  6 )  remain essentially constant i n  shape w i t h  varying 

electron energy and the excitation function A in Fig .  7 shows no discernible 

structuree 

d i f f icu l t  to interpretD 

( F i g .  8) which together w i t h  the onset in the excitation function B ( F i g .  7 )  

near 21 eV yields a dissociation limit o f  about 18,5 eV slightly lesso This 

energy i s  very close t o  the threshold f o r  dissociative Ionization ( -  18,6 eW) 

and definitely above that  for direct  excitation of the O(%S) state .  I t  seems 

that 0 atoms i n  highly excfteed (Rydberg) s ta tes  are produced w i t h  lifetfmes 

sufficiently long ( 2  10 psec) for  ddrect detection, I t  I s  possible that  some o f  

these highly excdted states j u s t  below the ioraizatdon "8mit o f  0 cascade down to 

the O ( 5 S )  state .  

Even a t  the higher 

In contrast to this, the h i g h  energy portion of metastables i s  more 

There exists a minimum nonzero fragment energy Emin 

The formation of htghly excjted 0 atoms in electron impact dissociation 

was also observed by Kuprianov8 who detected these atoms by surface-, f jeld-,  

and Penning ionlzation, 

i n  order t o  be observed by these methods. 

The O(5S]  s ta te ,  however, had too low an excitation energy 

I t  3s very interesting to note that  



curve B i n  Fig .  7 for the process 

o2 + e + 0"" =+ o + e 

i s  very similar t o  t h a t  obtained by Kupr-ianov for  the djssoclative ionizatplon 

process 

T h i s  indeed suggests t h a t  highly excited O** atoms are formed i n  Rydberg s ta tes  

w h f c h  converge t o  the proper 0' ion iza t ion  l jmito 

I t  9's seen from the structure numbered 2, 3 ,  and 4 in the time of f l i g h t  

spectra (Figo  3)  t h a t  several states contributed, 

ta t ion  somewhat uncertafn. Furthemore, additional structure 5 a"n F i g s  3 appears 

a t  h i g h  electron energies, I t  was found  t h a t  this structure disappeared as the 

detector.distance was increased from 6 t o  about  22 cm, This  indicates t h a t  the 

%%Petime o f  excited fragment atoms i n  th js  case was o f  the order o f  10 psec or 

less. In  distinction t o  this ,  the relative peak heights o f  structure 1 and the 

group represented by structures 2,  3 ,  and 4 remained prac t ica l ly  constant and these 

was no decay as the detector distance was increased, 

T h i s  makes a detailed interpre- 

This indicates t h a t  the 

ms produced i n  this case have long lifetimes. In f a c t ,  the lifetime 

of the O(5S) s ta te  can be expected t o  be about  600 pseco9 The lifetime o f  

Rydberg s ta tes  a's a lso of the same order 4P the principal quantum number n i s  

about '80 o r  higher, l o  

I n  the following we concentrate on our results for 0 atoms produced 

i n  the 5S state ,  Here the ambiguities f n  the interpretation are rather 



few i n  contrast to the case of higher lying s ta tes .  

Assignment o f  States 

I t  was possible to  determine t h e  s t a t e  s f  O2 which led t o  structure 1 

and A i n  FIg. 3 and F l g o  4,, respectjvely, and to excitation function A i n  F i g o  7, 

I t  was established Prom the threshold i n  the excitation function near 14.3 eW 

together w i t h  the shape o f  the energy spectrum (Fig, 61, wha”ch extended to zero 

kinetic energies, that  the dissociation products were O(5So)  .g O(3P)a Cascading 

to the O ( 5 S 0 )  s t a t e  must have played a minor role since structure i n  the excitation 

function was absent and the shapes o f  the tfme o f  f l j gh t  and energy distributions 

were constant for  electron energa’es suffsicsent to  cover the Franck-Condon region 

( F i g .  81, i , e ,  energjes above 18 eV, 

responsible for  %he observed djrect  formation o f  O(5Ss6F)o  

given for  example by Werzberg,7 this s t a t e  was identified fn the following way: 

The s ta tes  S Odd + Peven o f  the separated 0 atoms lead to possible molecular 

s ta tes  cU and nu  o f  02” However9 the cu states  can be excluded s’ince 

O2 has a 

electron impact exc9 t a t i  on accordl ng t o  Qassettre and Krasnov. 

exclude li s ta tesg  because the matrix element f o r  the transition c-  -g n 

vanfshes I n  the Born approximatdon f o r  an observation angle o f  90’ (and 0°> w i t h  

respect t o  the beam direction according -LO D u n n O F 2  On the other hand, the matrix 

element for  the transition C -  =+ n u  i s  nonzero fo r  an angle o f  90’ (and zero for  
g 

0’). 

the molecular s t a t e  i n  question i s  a xu s t a t e  nonetheless, slnce there was a sizeable 

signal a t  higher energies where this  approximation should  yield correct results,  

a% least  as far  as symmetrles are concerned, 

dissociation products a t  fallows that the ~ f - ~  s t a t e  has the multiplicity 3 ,  5,  or 7 o  

Therefore one s t a t e  o f  O2 was probably 

Using symmetry arguments 

+ + 
9 9  ? 9  S ! J  

ground s t a t e  and the t%-ansi&ion - ++ + i s  hlghly forbidden i n  
9 

We can further 

g 9 g 

Although the Born approximation 1s not valid near threshold, we assumed that  

Fs-om the multiplicity o f  the 

1% 



A multiplicity o f  9 can be excluded because it. would require a double spin 

Plip, E t  is  most likely t h a t  the nu s ta te  has a multiplicity o f  3 because 

i t  is  excfted with appreciable strength a t  higher electron energ-ies. For a 

change in multiplicity, excjta%.ssn functions usually drop o f f  distinctly a t  

the higher energies in contrast t o  our  measurements (see curve A i n  Fig.  7 ) 0  

Me cannot exclude the possibility t h a t  there was a Snu s ta te  contribution a t  

the lowest energies, 

l e t t e r  Q indicates t h a t  the oxygen qwintet 5 s ta te  a”s formed in the dissociation 

process 

We have designated the %rU as a Q3nu s ta te ,  where the 

We did not  attempt t o  fdentify the states leading t o  the more energetic 

group o f  metastable fragments ( F i g o  5 and s%ructures 2 through 5 i n  F i g o  310 

The dissociation products were not known % n  this case and furthemore several states 

contributed, 

average over a t  least  two states which contribu%ed a t  an electron energy of 30 eV, 

The purely repulsive curve drawn Sn Flg ,  8 I s  only q u  I i t a t ive  and an 

V, SUMMARY AND ~ ~ ~ ~ ~ ~ $ ~ O ~ ~  

1,  We have observed groups o f  0 metastables produced ’ ~ n  electron Smpact 

dissociation f O2 w i t h  mean kinetic energies o f  about  003 and 2 elle Metastable 

0 atoms were formed in the O(%) s ta te  (9.14 eud) as well as h i g h  lying 

Rydberg states near the 0 ionization I - i m j t ,  

The energy spectra o f  metastables together w i t h  time-resolved excitata’on 

functions were used t o  construct repulsive potential energy curves of 

The 0(%) s ta te  was produced near the minimum energy o f  $4,3 eW required for 

i t s  dissociative exci%ation, 

arguments concern? ng the angular variation o f  metastable fragments 

molecular s ta te  havlng the dissocfat-ion I m t  0g5S) di- 0g3P) a t  l4 ,3  eW was 

2, 

3, 

On the basis o f  selection rules and symmetry 

the 



identified as a 3nu state w i t h  some uncertainty i n  the multipllcity 

keeping i n  mind the dissociation product O(sS), we have called this  s t a t e  

the Q3nu s ta te ,  where Q stands for  quintet. 

identify molecular s ta tes  reached a t  higher energieso 

however, that  some of these molecular s ta tes  lead t o  dissociation limits 

involving 0 atoms i n  h i g h  lying (Rydberg) s ta tes ,  

The absolute differential cross section da/dQ for  the production of the 

O(%S) s t a t e  was found to be 1 x $0’~9cmm”/sterad w i t h i n  a factor of two a t  

an electron energy of 30 eV and a dfrection perpendicular to  the electron 

beam 

Some geophysical implicatdons o f  the present measurements are the following: 

The relatfvely h i g h  kl netic energies o f  metastables produced -e”n dissociative 

excitation contribute to  the heat i n p u t  =into the upper atmosphere, i n  particular 

under auroral conditionso Further, the nonthermal velocities o f  the 

fragments have t o  be taken into account l’n the radiative transfer treatment 

of resonance radlation o f  0 and other species, sa”nce i t  4 s  likely that 

ground s t a t e  atoms produced i n  dissociation o f  molecules have also non- 

thermal weloci t ies .  Final ly, certaj  n chemical reactfons between dissociative 

fragments and atmospheric gases may be possible by virtue o f  either the 

h i g h  translational energies o r  the excitation energies of the fragments 

formed i n the d i  ssoci a t i  on process 

Me have not attempted t o  

I t  4s clear,  

4. 

5. 

We w i s h  to sincerely thank MY, P o  W ,  Erdman for his helpful 

assistance dn the data reduction, 
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