Cascading failure models are typically used to capture the phenomenon where
failures possibly trigger further failures in succession, causing knock-on
effects. In many networks this ultimately leads to a disintegrated network
where the failure propagation continues independently across the various
components. In order to gain insight in the impact of network splitting on
cascading failure processes, we extend a well-established cascading failure
model for which the number of failures obeys a power-law distribution. We
assume that a single line failure immediately splits the network in two
components, and examine its effect on the power-law exponent. The results
provide valuable qualitative insights that are crucial first steps towards
understanding more complex network splitting scenarios