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Abstract—We consider a stylized stochastic model for a
wireless CSMA network. Experimental results in prior studies
indicate that the model provides remarkably accurate throughput
estimates for IEEE 802.11 systems. In particular, the model offers
an explanation for the severe spatial unfairness in throughputs
observed in such networks with asymmetric interference condi-
tions. Even in symmetric scenarios, however, it may take a long
time for the activity process to move between dominant states,
giving rise to potential starvation issues.

In order to gain insight in the transient throughput character-
istics and associated starvation effects, we examine in the present
paper the behavior of the transition time between dominant
activity states. We focus on partite interference graphs, and
establish how the magnitude of the transition time scales with the
activation rate and the sizes of the various network components.
We also prove that in several cases the scaled transition time
has an asymptotically exponential distribution as the activation
rate grows large, and point out interesting connections with
related exponentiality results for rare events and meta-stability
phenomena in statistical physics. In addition, we investigate the
convergence rate to equilibrium of the activity process in terms
of mixing times.

Index Terms—CSMA networks, throughput starvation, inter-
ference graph, asymptotic exponentiality, mixing time, conduc-
tance.

I. INTRODUCTION AND MOTIVATION

We consider a stylized model for a network of nodes sharing
a wireless medium according to a CSMA-type protocol. The
network is described by an undirected graph (V,E) where the
set of vertices V represents the various nodes of the network
and the set of edges E ⊆ V × V indicates which pairs of
nodes interfere. In other words, nodes that are neighbors in the
interference graph are prevented from simultaneous activity,
and thus the independent sets correspond to the feasible joint
activity states. A node is said to be blocked whenever the
node itself or any of its neighbors is active, and unblocked
otherwise. Each node activates (starts a transmission) at an
exponential rate ν whenever it is unblocked. The transmis-
sion durations of nodes are independent and exponentially
distributed with unit mean.

This research was financially supported by The Netherlands Organization
for Scientific Research (NWO) in the framework of the TOP-GO program
and by an ERC Starting Grant.

Let Ω∗ ⊆ {0, 1}V be the collection of incidence vectors
of the independent sets of the interference graph (V,E), and
let X∗t ∈ Ω∗ denote the joint activity state at time t, with
its i-th element indicating whether or not node i is active at
time t. Then (X∗t )t≥0 is a reversible Markov process [1] with
stationary distribution

πx(ν) = lim
t→∞

P {X∗t = x} =
ν‖x‖1∑

y∈Ω∗ ν
‖y‖1

, x ∈ Ω∗, (1)

with ‖x‖1 =
∑
i∈V xi the number of active nodes in state x.

The above model has a long history [2]–[4]. It was rediscov-
ered in the context of IEEE 802.11 systems in [5], and further
developed in that setting in [6], [7]. While the modeling of the
IEEE 802.11 back-off mechanism is less detailed than in the
model of Bianchi [8], the general interference graph offers
greater versatility and covers a broad range of topologies.
Experimental results in [9] demonstrate that the model, while
idealized, provides remarkably accurate throughput estimates
for actual IEEE 802.11 systems. It is also worth observing
that the model amounts to a special instance of a loss network
[10], [11], and that the stationary distribution corresponds
to the Gibbs measure of the hard-core model in statistical
physics [12], [13].

An activity state in Ω∗ is called dominant if it corresponds to
an independent set of maximum size maxx∈Ω∗ ‖x‖1. It follows
from the stationary distribution (1) that only the dominant
states retain probability mass as ν →∞. This causes a severe
problem, called spatial unfairness, when some nodes belong to
fewer maximum-size independent sets than others as a result
of asymmetric interference conditions [14], and receive far
lower or even zero throughputs.

Even in symmetric scenarios where the long-term through-
puts are equal, however, potential starvation issues can occur,
since it may take a long time for the activity process to move
between dominant states. Consider for example an interference
graph where the nodes can be partitioned into two independent
sets of maximum size. The activity process will spend roughly
half of the time in each of the two associated dominant
states as ν → ∞. Since each of the nodes is active in
one of the dominant states, they will all receive equal long-
term throughputs, so spatial unfairness is not an issue in



the long run. Yet, another source of severe unfairness arises
as ν → ∞, because it will take an extremely long time
for the activity process to move from one dominant state to
the other (resembling meta-stability phenomena in statistical
physics [15], [16]). As a result, each node will experience long
sequences of transmissions in rapid succession, interspersed
with extended periods of starvation.

In order to gain insight in the above issue, we explore in
the present paper the behavior of the Markov process (X∗t )t≥0

in a scenario with a complete K-partite interference graph
(V,E). By this we mean that the nodes can be partitioned into
K disjoint sets called components, such that two nodes block
each other, if and only if they belong to different components.
The key contributions of the present paper may be summarized
as follows:

(i) We examine the asymptotic behavior (as ν → ∞) of
the transition time between various activity states, exploiting
classical results for absorption times in birth-and-death pro-
cesses [17]–[19] and a representation of the transition time as
a geometric random sum.

(ii) We establish that the magnitude of the transition time
scales as Θ(νβ−1), reflecting how ‘rigid’ the dominant activity
pattern is as function of the activation rate ν and the expo-
nent β, which is completely determined by the sizes of the
various components.

(iii) We prove that in several cases the scaled transition time
has an asymptotically exponential distribution and compare it
with related exponentiality results for rare events [20]–[25].

(iv) We investigate the rate of convergence of the activity
process to the equilibrium distribution, and demonstrate that
the mixing time is of the same order as the escape time of the
second-largest component.

The remainder of the paper is organized as follows. In Sec-
tion II we present a model description and some preliminary
results. In Section III we examine the asymptotic behavior of
the transition time in the case of a bipartite graph. Section IV
describes the extension of the results to arbitrary partite
graphs. In Section V we investigate the rate of convergence to
equilibrium in terms of mixing times. Section VI concludes
with some remarks and a review of further extensions.

II. MODEL DESCRIPTION AND PRELIMINARY RESULTS

Consider the Markov process (X∗t )t≥0 as described in the
introduction with a complete K-partite interference graph
(V,E). Thus the nodes in V can be partitioned into K disjoint
sets called components, such that two nodes are connected
by an edge in E, if and only if they belong to different
components. In view of the symmetry, all the states with the
same number of active nodes in a given component can be
aggregated, and we only need to keep track of the number
of active nodes, if any, and the component they belong to.
This state aggregation yields an equivalent Markov process
(Xt)t≥0 on a star-shaped state space Ω with K branches
which emanate from a common root node and correspond
to the components of the interference graph. Specifically,
Ω = {0}∪{(k, l) : 1 ≤ l ≤ Lk, 1 ≤ k ≤ K}, where the center

state 0 indicates that none of the nodes is active and state (k, l)
corresponds to the situation where l nodes are active in the k-
th component, denoted by Ck, with Lk denoting the size of Ck
(see Figure 1). Notice that Ω can be alternative described as
{0}∪

⋃K
k=1 Ck. The transition rates of the process (Xt)t≥0 are

given by q(0, (k, 1)) = Lkν, q((k, l), (k, l+ 1)) = (Lk − l)ν,
l = 1, . . . , Lk−1, q((k, 1), 0) = 1, and q((k, l), (k, l−1)) = l,
l = 2, . . . , Lk, k = 1, . . . ,K.

Fig. 1. Example of the state space Ω with K = 4.

The stationary distribution of the process (Xt)t≥0 reads

π0(ν) =
(

1 +

K∑
k=1

Lk∑
l=1

(
Lk
l

)
νl
)−1

, (2)

π(k,l)(ν) = π0(ν)

(
Lk
l

)
νl, l = 1, . . . , Lk, k = 1, . . . ,K.

Denote by

T(k1,l1),(k2,l2)(ν) = inf{t > 0 : Xt = (k2, l2)|X0 = (k1, l1)}

the first-passage time of state (k2, l2) starting in (k1, l1), which
we also refer to as the transition time from state (k1, l1) to state
(k2, l2). In the next sections we will analyze the asymptotic
behavior of the transition time as ν → ∞. As discussed in
the introduction, the transition time provides useful insight in
transient throughput characteristics and starvation effects in
wireless CSMA networks.

In preparation for the asymptotic analysis of general scenar-
ios, we first present a few results for the case where the two
states (k1, l1) and (k2, l2) belong to the same component, i.e.
k1 = k2 and l1 > l2. The presence of the other components is
not relevant then for the transition time, and hence we focus
on the case of just a single component (K = 1), and drop
the component index for now. When K = 1, the process
(Xt)t≥0 evolves as an elementary birth-and-death process on
the state space {L,L − 1, . . . , 1, 0}, so that we can exploit
several classical results for such processes.

A. Asymptotic growth rate

We first state how the expectation of the transition time
Tl1,l2(ν) scales as ν →∞. Here and throughout the paper we
write f(ν) ∼ g(ν) to indicate that limν→∞ f(ν)/g(ν) = 1 as
ν →∞ for any two real-valued functions f(·) and g(·).

Proposition II.1. For L ≥ l1 > l2 ≥ 0,

ETl1,l2(ν) ∼ l2!(L− l2 − 1)!

L!
νL−l2−1, ν →∞.

Proof: First observe that ETl1,l2(ν) =
∑l2+1
l=l1

ETl,l−1(ν),
so we can exploit a general result for birth-and-death pro-



cesses [18], which in the present case says that, for 0 < l ≤ L,
ETl,l−1(ν) = 1

l

∑L
n=l

πn(ν)
πl(ν) . Now (2) implies that πn(ν) =

o(πL(ν)) as ν →∞ for all n = l, . . . , L− 1, so that

ETl,l−1(ν) ∼ 1

l

πL(ν)

πl(ν)
=

(L− l)!(l − 1)!

L!
νL−l, ν →∞.

Thus ETl,l−1(ν) = o(ETl2+1,l2) as ν →∞ for all l = l1, . . . ,
l2, and hence ETl1,l2(ν) ∼ ETl2+1,l2(ν) as ν →∞.

In order to gain insight in starvation effects, we are partic-
ularly interested in the time for the activity process to reach
the center state 0, referred to as escape time, because at such
points in time nodes in other components have an opportunity
to activate. Proposition II.1 shows that

ETl1,0(ν) ∼ 1

L
νL−1, ν →∞. (3)

Hence, the escape time grows as a power of ν, where the
exponent corresponds to the component size minus one, and
is asymptotically not influenced by the starting state l1.

B. Asymptotic exponentiality

Having obtained the asymptotic growth rate, we now turn
attention to the distribution of the scaled escape time, and show
that it has an asymptotically exponential distribution. We will
leverage the following well-known result for birth-and-death
processes, which is commonly attributed to Keilson [19] or
Karlin and McGregor [17].

Theorem II.2. Consider a birth-and-death process with gen-
erator matrix Q on the state space {0, . . . , d} started at
state d. Assume that 0 is an absorbing state, and that the
other birth rates {λi}d−1

i=1 and death rates {µi}di=1 are positive.
Then the absorption time in state 0 is distributed as the sum
of d independent exponential random variables whose rate
parameters are the d nonzero eigenvalues of −Q.

Let Q(ν) be the generator matrix of the birth-and-death
process (Xt)t≥0 on the state space {L,L− 1, . . . , 1, 0}, with
0 an absorbing state. Let 0 < α1(ν) < α2(ν) < · · · < αL(ν)
denote the non-zero eigenvalues of −Q(ν). The property
that the eigenvalues {αi(ν)}Li=1 are distinct, real and strictly
positive, is well-known [26], see also the proof of Lemma II.3.

Applying Theorem II.2, we obtain that

TL,0(ν)
d
=

L∑
i=1

Yi(ν), (4)

where Y1(ν), . . . , YL(ν) are independent exponentially dis-
tributed random variables with EYi(ν) = 1/αi(ν).

Intuitively, the eigenvalue α1(ν) will become really small
as ν → ∞, and so the mean escape time ETL,0(ν) will be
dominated by EY1(ν) = 1/α1(ν). Combining (3) and (4)
suggests that

α1(ν) ∼ 1

ETL,0(ν)
∼ L

νL−1
, ν →∞.

Indeed, we can make this precise with the following result
for the growth rates of the eigenvalues as ν → ∞ and their
relation to the mean escape time ETL,0(ν). The proof of

the result is presented in Appendix A, and exploits detailed
information about the growth rates of the eigenvalues obtained
via symmetrization and the Gershgorin circle theorem.

Lemma II.3.

lim
ν→∞

αi(ν) · ETL,0(ν) =

{
1, i = 1,
∞, i = 2, . . . , L.

The above lemma shows that the smallest eigenvalue α1(ν)
becomes dominant as ν →∞, but also proves the asymptotic
exponentiality of the escape time. Indeed (4) means that the
Laplace transform of the scaled escape time is

LTL,0(ν)/ETL,0(ν)(s) =

L∏
i=1

(
1 +

s

αi(ν) · ETL,0(ν)

)−1

.

Lemma II.3 then implies that

lim
ν→∞

LTL,0(ν)/ETL,0(ν)(s) =
1

1 + s
.

The continuity theorem for Laplace transforms then yields
that the scaled escape time has an asymptotically exponential
distribution as stated in the next theorem, where Exp(λ)
denotes an exponentially distributed random variable with
mean 1/λ.

Theorem II.4.
TL,0(ν)

ETL,0(ν)

d−→ Exp(1), ν →∞.

The above result may be interpreted as follows. For large ν,
state L is frequently visited, while state 0 becomes rare. This
suggests that the probability of hitting state 0 before the first
return to state L becomes small. So the time TL,0(ν) consists
of a geometric number of excursions from L which return
to L without hitting 0, followed by part of the excursion that
hits 0. Hence, apart from this final excursion, TL,0(ν) is the
sum of a large geometric number of i.i.d. random variables,
which should be asymptotically exponential.

The fact that the time until the first occurrence of a rare
event is asymptotically exponential, is a widely observed
phenomenon in probability [25]. In order to establish expo-
nentiality of hitting some subset B of the state space, one
typically decomposes the process into regenerative cycles, and
assumes that (i) the probability of hitting B in a single cycle
is small, and (ii) the length of the cycle in which B is hit
is asymptotically negligible compared with the mean cycle
length [23], [25]. For the case K = 1, both assumptions
hold, and an alternative proof of Theorem II.4 can be obtained
using [23, Thm.1] (which is a generalized version of the
theorem proved in [24]). However, this general theorem for
regenerative processes will fail for the majority of cases
considered in this paper. For instance, in the case K = 2 and
L1 = L2 (two identical components), the process (Xt)t≥0

will exhibit bistable behavior, in the sense that, as ν → ∞,
it spends extremely long periods circling around either one
of the leaf nodes. For analyzing the transition time between
the two dominant leaf nodes, assumption (i) remains valid,
because it is still extremely hard to go from one leaf to the
other, but assumption (ii) will be violated. Indeed, when the
process crosses all the way from one leaf to the other, the



length of the latter cycle will be of the same order as the entire
hitting time. Despite the fact that the regenerative approach no
longer works, we will prove (using different methods) in the
next section that the scaled transition time between dominant
states is still asymptotically exponential.

Let us finally remark that for reversible Markov chains
similar exponentiality results were established in [20]–[22].
Aldous [20] showed that a result like Theorem II.4 can
be expected when the underlying Markov process converges
rapidly to stationarity. Indeed, the Markov process (Xt)t≥0

for the case K = 1 turns out to have a small mixing time.
However, the picture changes drastically in the case K ≥ 2,
for which we prove in Section V that the mixing time is
Θ(νβ−1) with β the size of the second-largest component;
hence the mixing time is of the same order as the escape time
of the second-longest branch, see (3). For large ν, this implies
that the Markov process is extremely slowly mixing, which is
another way of understanding why the regenerative approach
sketched above fails in this situation.

III. BIPARTITE INTERFERENCE GRAPH

In this section we examine the asymptotic behavior of the
transition time T(k1,l1),(k2,l2)(ν) as ν → ∞ for any pair
of states (k1, l1) and (k2, l2) when the interference graph
is bipartite. We will establish how the expectation scales
(Theorem III.1) and use two different methods to prove that
the scaled transition time has an asymptotically exponential
distribution when states (k1, l1) and (k2, l2) belong to different
branches (Theorem III.2). Most of these results in fact extend
to arbitrary partite graphs, as will be shown in the next section.
However, we treat the case of a bipartite graph separately first,
since it allows us to develop the key ideas in a relatively
transparent setting, while being sufficiently rich to exhibit the
essential qualitative characteristics of general scenarios.

Consider a bipartite interference graph, i.e. K = 2, where
the two components C1 and C2 have sizes L1 and L2, respec-
tively. In this case, the two branches of the state space along
with the root node form a simple linear array. For notational
convenience, we will therefore relabel the states, indicating
the number of active nodes in C1 by a negative integer in
{−L1, . . . ,−1, } and representing the number of those in C2
by a positive integer in {1, . . . , L2}.

The activity process (Xt)t≥0 on Ω = C1 ∪{0}∪C2 evolves
as a birth-and-death process with transition rates

q(l, l + 1) =

{
|l| if − L1 ≤ l < 0,

(L2 − l)ν if 0 ≤ l < L2,

q(l, l − 1) =

{
(L1 − |l|)ν if − L1 < l ≤ 0,

l if 0 < l ≤ L2,

yielding

π−l(ν) = π0(ν)

(
L1

l

)
νl, l = 1, . . . , L1, (5)

πm(ν) = π0(ν)

(
L2

m

)
νm, m = 1, . . . , L2. (6)

A. Asymptotic growth rate

We first determine how the expectation of the transition time
T−l1,l2(ν) scales as ν →∞.

Theorem III.1. For any 0 < l1 ≤ L1 and 0 < l2 ≤ L2,

ET−l1,l2(ν) ∼ L1 + L2

L1L2
νL1−1, ν →∞. (7)

In the CSMA context, the above theorem implies that
when at least one of the nodes in component k is currently
active, k = 1, 2, it will approximately take an amount of
time L1+L2

L1L2
νLk−1 before any number of nodes in the other

component 3− k will have a chance to transmit.
Proof: As before, note that for any l1 < l2 ETl1,l2(ν) =∑l2−1

l=l1
ETl,l+1(ν), so we can again use a general result for

birth-and-death processes [18], which in the present case says
that ETl,l+1(ν) = 1

q(l,l+1)

∑l
n=−L1

πn(ν)
πl(ν) , for −L1 ≤ l < L2.

Now (5) and (6) imply that πn(ν) = o(π−L1
(ν)) as ν → ∞

for all n = −L1 + 1, . . . ,min{L1 − 1, L2} and πn(ν) =
o(πl(ν)) as ν → ∞ for all n = −L1, . . . , l − 1, when l =
L1 + 1, . . . , L2. Thus, for −L1 ≤ l < 0, as ν →∞,

ETl,l+1(ν) ∼ 1

l

π−L1
(ν)

πl(ν)
=

(L1 − |l|)!(|l| − 1)!

L1!
νL1−|l|,

and, for 0 ≤ l ≤ L2, as ν →∞, ETl,l+1(ν) scales as
ν−1

(L2−l)
π−L1

(ν)

πl(ν) = (L2−l−1)! l!
L2! νL1−l−1 if l < L1,

ν−1

(L2−L1)

π−L1
(ν)+πL1

(ν)

πL1
(ν) = L2!+L1!(L2−L1)!

(L2−L1)L2! ν−1 if l = L1,
ν−1

(L2−l)
πl(ν)
πl(ν) = 1

L2−lν
−1 if l > L1.

(8)
It follows that ETl,l+1(ν) = o(ET−1,0(ν)) as ν → ∞ for all
l = −L1, . . . ,−2 and l = 1, . . . , L2 − 1. Hence, as ν →∞,

ET−l1,l2(ν) ∼ ET−1,0(ν)+ET0,1(ν) ∼ 1

L1
νL1−1+

1

L2
νL1−1,

which yields (7).

Remark 1. Theorem III.1 only deals with the case where
the two states −l1 and l2 belong to different components,
but extends to the case where the two states belong to the
same component. In case 0 ≤ l2 < l1 ≤ L1, the transition
time T−l1,−l2(ν) is not influenced by the presence of the
second component, and its expected value thus follows from
Proposition II.1. In case 0 ≤ l1 < l2 ≤ L2, it may be deduced
from (8) that ETl1,l2(ν) ∼ ETl1,l1+1(ν) as ν →∞, yielding

ETl1,l2(ν) ∼


(L2−l1−1)! l1!

L2! νL1−l1−1 if l1 < L1
L2!+L1!(L2−L1)!

(L2−L1)L2! ν−1 if l1 = L1

1
L2−l1 ν

−1 if l1 > L1

, ν →∞.

B. Asymptotic exponentiality

In the previous subsection we obtained the asymptotic
growth rate of the mean transition time ET−l1,l2(ν) as ν →∞.
We now turn attention to the scaled transition time and will
prove that it has an asymptotically exponential distribution as
stated in the next theorem.



Theorem III.2. For any 0 < l1 ≤ L1 and 0 < l2 ≤ L2

T−l1,l2(ν)

ET−l1,l2(ν)

d−→ Exp(1), ν →∞.

Before providing a proof, we first present an interpretation
of the above theorem. In order for the process to make a
transition from state −l1 to state l2, it must first reach state 0.
Proposition II.1 indicates that the expected transition time from
state −L1 to state −l1 is asymptotically negligible compared
to the expected transition time from state −l1 to state 0.
This means that the transition time from state −l1 to state 0
asymptotically behaves as the transition time from state −L1

to state 0. Theorem II.4 shows that the latter time, after
scaling, has an asymptotically exponential distribution. Once
the process has reached state 0 for the first time, there are two
possible scenarios. With probability p = L1/(L1 + L2), the
process returns to state −1, and then almost surely falls back
to state −L1 quite rapidly (compared with the time to reach
state 0). With probability 1− p, the process moves to state 1,
and then most likely is attracted to state l2 quite quickly.

In conclusion, in order for the process to make a transition
from state −l1 to state l2 it must visit state 0 once plus a
geometrically distributed number of times with parameter p.
The successive time periods to reach state 0 are independent
and, after scaling, exponentially distributed. Observing that
the sum of one plus a geometrically distributed number of
independent and exponentially distributed random variables is
again exponentially distributed, we arrive at the statement of
the above theorem.

Obviously, the above argumentation is heuristic, and in the
next two subsections we will provide a rigorous proof. The
first proof method is analytical in nature, and relies on an
asymptotic characterization of the eigenvalues of the generator
matrix, while the second proof is more probabilistic, and in
fact closely mirrors the above intuitive explanation.

Remark 2. Theorem III.2 only deals with the case where
the two states −l1 and l2 belong to different components,
but extends to the case where the two states belong to the
same component. In case 0 ≤ l2 < l1 ≤ L1, the transition
time T−l1,−l2(ν) is not affected by the presence of the
second component, and thus has an asymptotically exponential
distribution according to Theorem II.4. In contrast, in case
0 ≤ l1 < l2 ≤ L2, a fundamentally different situation emerges.
In that case, a series of upward transitions from state l1 to
state l2 occurs in rapid succession with high probability, so
that the transition time converges in distribution to 0, even
though its expectation may not tend to 0 and in fact grow to
infinity as ν →∞ when l1 < L1, as observed in Remark 1.

C. Analytical approach

We now extend the analytical approach of Section II to
prove the asymptotic exponentiality of the scaled transition
time as stated in Theorem III.2. For convenience, we restrict
attention to l1 = L1, but the proof readily extends to any
l1 ∈ {1, . . . , L1 − 1}.

Let Q(ν) be the generator matrix of the birth-and-death pro-
cess (Xt)t≥0 on the state space {−L1, . . . ,−1, 0, 1, . . . , l2}
with l2 an absorbing state. Let 0 < γ1(ν) < γ2(ν) < · · · <
γL1+l2(ν) denote the non-zero eigenvalues of −Q(ν).

Theorem II.2 implies that T−L1,l2(ν)
d
=
∑L1+l2
i=1 Yi(ν),

where Y1(ν), . . . , YL1+l2(ν) are independent and exponen-
tially distributed random variables with EYi(ν) = 1/γi(ν).

The following lemma shows that the smallest eigenvalue
γ1(ν) becomes dominant as ν →∞, and implies the asymp-
totic exponentiality stated in Theorem III.2. The proof is
similar to that of Lemma II.3 and thus omitted.

Lemma III.3.

lim
ν→∞

γi(ν) · ET−L1,l2(ν) =

{
1, i = 1,
∞, i = 2, . . . , L1 + l2.

D. Probabilistic approach

We now present an alternative, probabilistic approach to
establish the asymptotic exponentiality of the scaled transition
time as stated in Theorem III.2. In contrast to the analytical
method as used in the previous subsection, the probabilistic
approach in fact extends to arbitrary partite graphs, but we
first focus on the case of a bipartite graph in order to
illuminate the key ideas. The approach relies on a stochastic
decomposition of the transition time into independent random
variables which are easier to handle. In order to obtain the
stochastic decomposition, we consider the evolution of the
process as it makes a transition from state −l1 to a state l2,
and define the following random variables:
• T−l1,−1(ν): time to reach state −1 for the first time;
• T (0)

−1,0(ν): time to reach state 0 once the process has
reached state −1 for the first time;
• N : number of times the process makes a transition 0 →

−1 before the first transition 0→ 1 occurs;
• T̂ (i)

0,−1(ν): time spent in state 0 before the i-th transition
back to state −1, i = 1, . . . , N ;
• T̂0,1(ν): time spent in state 0 before the first transition to

state 1;
• T (i)
−1,0(ν): time to return to state 0 after the i-th transition

back to state −1, i = 1, . . . , N ;
• T1,l2(ν): time to reach state l2 once the process has

reached state 1 for the first time.
By definition, the transition time may be represented as

T−l1,l2
d
=T−l1,−1 + T

(0)
−1,0 (9)

+

N∑
i=1

(
T̂

(i)
0,−1 + T

(i)
−1,0

)
+ T̂0,1 + T1,l2 ,

where the dependence on the parameter ν is suppressed for
compactness. We can make the following observations:
• The random variables T−l1,−1 and T1,l2 are distributed as
typical hitting times for the respective pairs of states;
• The random variables T (i)

−1,0, i = 0, 1, . . . , N , are i.i.d. copies
of a typical transition time T−1,0;
• The random variables T̂0,1 and T̂

(i)
0,−1, i = 1, 2, . . . , N ,

are i.i.d. copies of a random variable T0
d
= Exp((L1 +L2)ν),



which represents the residence time in state 0;
• N d

= Geo(p), p = L1

L1+L2
, independent of the parameter ν;

• All the random variables are independent.
Based on the stochastic representation in (9) and the above

observations, we now proceed to give a proof of the asymptotic
exponentiality of the transition time as stated in Theorem III.2.
The proof consists of three main parts: (i) the first part
establishes that the distribution of the scaled transition time
T−l1,l2(ν) asymptotically coincides with that of a dominant
term U(ν), which involves a random sum of i.i.d. random
variables (Proposition III.4); (ii) the second part serves to
identify the asymptotic behavior of each of these random
variables (Proposition III.5); (iii) the third part then shows that
a scaled random sum asymptotically behaves as the random
sum of the scaled terms (Proposition III.6).

Part (i): According to Theorem III.1 and Remark 1, the
mean values of the random variables T (i)

−1,0, i = 0, 1, . . . , N ,
asymptotically dominate, i.e. they are an order-of-magnitude
larger than those of all other random variables in (9) as
ν →∞. This suggests that the asymptotic behavior of the tran-
sition time T−l1,l2(ν) will be determined by that of U(ν) =∑N
i=0 T

(i)
−1,0(ν), and in particular that the distribution of the

scaled transition time T−l1,l2(ν)/ET−l1,l2(ν) asymptotically
coincides, as ν →∞, with that of U(ν)/EU(ν). This follows
as a special case of Proposition III.4 below, whose proof is
technical, but relatively straightforward, and omitted because
of page limitations. In passing we note that the above obser-
vations also imply that the expectation of T−l1,l2(ν) scales
as EU(ν) =

(
1 + EN(ν)

)
ET−1,0(ν) = L1+L2

L2
ET−1,0(ν),

with ET−1,0(ν) ∼ νL1−1/L1 as ν → ∞ according to
Proposition II.1, which corroborates Theorem III.1.

Part (ii): In order to determine the asymptotic behav-
ior of the random variable T−1,0(ν), we first observe that
T−L1,0(ν)

d
=T−L1,−1(ν) + T−1,0(ν). According to Theo-

rem III.1, the mean value of T−L1,−1(ν) is asymptoti-
cally negligible compared to that of T−1,0(ν), which sug-
gests that the asymptotic behavior of T−1,0(ν) is equiva-
lent to that of T−L1,0(ν). Since Theorem II.4 states that
T−L1,0(ν)/ET−L1,0(ν) has an asymptotically exponential dis-
tribution, this would imply that the same holds for the scaled
hitting time T−1,0(ν)/ET−1,0(ν), as is covered as a special
case of Proposition III.5, stated and proved below.

Part (iii): It remains to be shown that U(ν)/EU(ν), with
U(ν) =

∑N
i=0 T

(i)
−1,0(ν), asymptotically behaves as the ran-

dom variable 1
1+EN

∑N
i=0 Yi, when T−1,0(ν)/ET−1,0(ν)

d−→
Y , and Y1, Y2, . . . are i.i.d. copies of the random variable Y .
This follows as a special case of Proposition III.6 below, whose
proof is in Appendix B. In particular, if N is geometrically dis-
tributed and Y is exponentially distributed, then U(ν)/EU(ν)
has an asymptotically exponential distribution as well.

Proposition III.4. Let T (ν), U(ν), V (ν),W (ν) be non-
negative random variables such that
(i) limν→∞ EV (ν)/EU(ν) = 0 = limν→∞ EW (ν)/EU(ν);
(ii) For every ν > 0, U − V ≤st T ≤st U + W , i.e. ∀ t > 0

P {U − V > t} ≤ P {T > t} ≤ P {U +W > t};
(iii) U(ν)/EU(ν)

d−→ X as ν → ∞, where X is a random
variable independent of ν with continuous c.d.f..
Then T (ν)/ET (ν)

d−→ X as ν →∞.

Proposition III.5. For any 0 < l ≤ L,

Tl,0(ν)

ETl,0(ν)

d−→ Exp(1), ν →∞.

Proof: The birth-and-death structure of the process and
the strong Markov property yield the stochastic identity
TL,0(ν)

d
=TL,l(ν)+Tl,0(ν), which gives the stochastic bounds

TL,0(ν) − TL,l(ν) ≤st Tl,0(ν) ≤st TL,0(ν) (the two terms
in the lower bound being dependent). It follows from The-
orem II.4 that TL,0(ν)/ETL,0(ν)

d−→ Exp(1) as ν → ∞. In
order to complete the proof, we can then use Proposition III.4,
taking U(ν) = TL,0(ν), V (ν) = TL,l(ν) and W (ν) = 0. The
condition which needs to be checked is limν→∞

EV (ν)
EU(ν) = 0,

which follows directly from Proposition II.1.

Proposition III.6. For every ν > 0, define SM (ν) :=∑M
i=1Xi(ν), where M is an integer-valued random variable

and {Xi(ν)}i≥1 is a sequence, independent of M , of i.i.d.
copies of a random variable X(ν), with EX(ν) <∞. Assume
that X(ν)/EX(ν)

d−→ Y as ν → ∞, where Y is some unit-
mean random variable. Then

SM (ν)

ESM (ν)

d−→ 1

EM

M∑
i=1

Yi, ν →∞,

where {Yi}i≥1 is a sequence, independent of M , of i.i.d. copies
of the random variable Y .

IV. ARBITRARY PARTITE GRAPHS

In this section we investigate the asymptotic behavior of
the transition time T(k1,l1),(k2,l2)(ν) as ν → ∞ for any pair
of states (k1, l1) and (k2, l2) in arbitrary partite graphs. While
the key ideas are similar to those used for the bipartite graph
in the previous section, there are now some dependencies
that require specific treatment and some different qualitative
features that arise in certain scenarios. In particular, it turns
out that the scaled transition time may no longer have an
asymptotically exponential distribution. This scenario arises
when there are longer branches than k1, in which case the
number of returns to the root node that dominate the transition
time is no longer geometrically distributed plus one, but just
geometrically distributed.

As in the case of the bipartite graph, the proof approach
involves a stochastic representation of the transition time, but
some of the terms are now no longer entirely independent. In
order to obtain the stochastic representation, we consider the
evolution of the process as it makes a transition from a state
(k1, l1) to a state (k2, l2), and define the following random
variables:
• T(k1,l1),(k1,1)(ν): time to reach state (k1, 1) for the first time;
• T (0)

(k1,1),0(ν): time to reach state 0 after state (k1, 1) is visited
for the first time;



• Nk: number of times the process makes a transition 0 →
(k, 1), k 6= k2, before the first transition 0→ (k2, 1) occurs;
• T̂ (i)

0,(k,1)(ν): time spent in state 0 before the i-th transition
back to state (k, 1), k 6= k2, i = 1, . . . , Nk;
• T̂0,(k2,1)(ν): time spent in state 0 before the first transition
to state (k2, 1);
• T (i)

(k,1),0(ν): time to return to state 0 after the i-th transition
back to state (k, 1), k 6= k2, i = 1, . . . , Nk;
• T(k2,1),(k2,l2)(ν): time to reach state (k2, l2) once the process
has reached state (k2, 1) for the first time.

By definition, the transition time may be represented as

T(k1,l1),(k2,l2)
d
=T(k1,l1),(k1,1) + T

(0)
(k1,1),0 (10)

+
∑
k 6=k2

Nk∑
i=1

(
T̂

(i)
0,(k,1) + T

(i)
(k,1),0

)
+ T̂0,(k2,1) + T(k2,1),(k2,l2),

where the dependence on the parameter ν is suppressed for
compactness. Define L :=

∑K
k=1 Lk, γ := Lν, and pk :=

Lk/L for all k = 1, . . . ,K.
We can make the following observations:
• The random variables T(k1,l1),(k1,1) and T(k2,1),(k2,l2) are
distributed as typical transition times for the respective pairs
of states;
• The random variables T (i)

(k,1),0 are i.i.d. copies of a typical
transition time T(k,1),0, i = 0, . . . , Nk, k 6= k2;
• The random variables T̂0,(k2,1) and T̂

(i)
0,(k,1), k 6= k2, i =

1, . . . , Nk, are i.i.d. copies of a random variable T0
d
= Exp(γ),

which is the residence time in state 0;
• N :=

∑
k 6=k2 Nk

d
= Geo(1 − pk2), independent of the

parameter ν;
• Given N = n, N̄ = (N1, . . . , Nk2−1, Nk2+1, . . . , NK)
has a multinomial distribution with parameters n and p̄1, . . . ,
p̄k2−1, p̄k2+1, . . . , p̄K , with p̄k = pk/(1− pk2)

P
{
N̄ = (n1, . . . , nk2−1, nk2+1, . . . , nK)

}
= pk2(1− pk2)

∑
k 6=k2

nk

(∑
k 6=k2 nk

n1, . . . , nK

) ∏
k 6=k2

p̄nk

k

= pk2

(∑
k 6=k2 nk

n1, . . . , nK

) ∏
k 6=k2

pnk

k ; (11)

• All the random variables representing time durations are
mutually independent, as well as independent of the random
variables Nk, k 6= k2.

Define L∗ := maxj 6=k2 Lj , K∗ := {k 6= k2 : Lk = L∗},
and p∗ := |K∗|L∗/(|K∗|L∗ + Lk2).

We first use the stochastic representation (10) to establish
how the expectation of the transition time scales.

Theorem IV.1. For 0 < l1 ≤ Lk1 , 0 < l2 ≤ Lk2 , k1 6= k2,

ET(k1,l1),(k2,l2)(ν) ∼
(
I{k1∈K∗}

L∗
+
|K∗|
Lk2

)
νL∗−1, ν →∞.

In the CSMA context, the above theorem implies that for
any component k when some other component is presently
active, it will roughly take an amount of time of the order νL

∗
,

L∗ = maxj 6=k Lj before any number of nodes in component k

will get an opportunity to transmit. The proof of the above
theorem is subsumed in that of the next one.

We now proceed to determine the asymptotic distribution
of the scaled transition time.

Theorem IV.2. For 0 < l1 ≤ Lk1 , 0 < l2 ≤ Lk2 , k1 6= k2,

T(k1,l1),(k2,l2)(ν)

ET(k1,l1),(k2,l2)(ν)

d−→ 1

EM

M∑
i=1

Yi, ν →∞,

where M
d
= Geo(p∗) + I{k1∈K∗} and Yi are independent

exponentially distributed random variables with unit mean.

Proof: The proof is similar to that for the bipartite
graph and is based on the stochastic representation (10) of
the transition time T(k1,l1),(k2,l2)(ν). Proposition II.1 implies
that ET(k1,l1),(k1,1)(ν) ∼ νLk1

−2 and ET(k,1),0(ν) ∼ νLk−1

for every branch k. Moreover, ET̂0,(k,1)(ν) = o(1), and it is
easily verified that ET(k2,1),(k2,l2)(ν) = o(νL∗−1) similarly
as in the proof of Theorem III.1. Thus the asymptotically
dominant term in (10) is

T(k1,1),0(ν)I{k1∈K∗}+
∑
k∈K∗

Nk∑
i=1

T
(i)
(k,1),0(ν)

d
=

M∑
i=1

T
(i)
(k,1),0(ν),

for M d
= Geo(p∗) + I{k1∈K∗} and for any k ∈ K∗, where

the latter stochastic equality follows from (11) and the fact
that the random variables T(k,1),0 are identically distributed
for all k ∈ K∗. Taking Xi(ν) := T

(i)
(k,1),0(ν) and applying

Propositions III.4-III.6 then completes the proof. Also, noting
that EM = I{k1∈K∗}+p

∗/(1−p∗) and ET(k,1),0 = νL
∗−1/L∗

yields the statement of Theorem IV.1.
The k-th branch, k 6= k2, is called weakly dominant if k ∈

K∗, i.e. if Lk ≥ Lj for all j 6= k2. Based on Theorem IV.2, we
may distinguish two scenarios, depending on whether branch
k1 is weakly dominant or not.

Suppose that branch k1 is weakly dominant, i.e. Lk1 = L∗.
In this case M d

= Geo(p∗) + 1 and so Theorem IV.2 implies
that for every 0 < l1 ≤ Lk1 and 0 < l2 ≤ Lk2

T(k1,l1),(k2,l2)(ν)

ET(k1,l1),(k2,l2)(ν)

d−→ Exp(1), ν →∞.

Thus in this case the scaled transition time converges to an
exponential random variable with unit mean as ν →∞.

Suppose instead that branch k1 is not weakly dominant, i.e.
Lk1 < L∗. In this case M d

= Geo(p∗) and so Theorem IV.2
implies that for every 0 < l1 ≤ Lk1 and 0 < l2 ≤ Lk2

T(k1,l1),(k2,l2)(ν)

ET(k1,l1),(k2,l2)(ν)

d−→ 1− p∗
p∗

Geo(p∗)∑
i=1

Yi, ν →∞,

where Yi are independent and exponentially distributed ran-
dom variables with unit mean.

V. MIXING TIMES

In the previous sections we have analyzed the transient
behavior of our Markov process (Xt)t≥0 in terms of hitting
times. In this section we turn attention to the long-run behavior



of our Markov process and in particular examine the rate of
convergence to the stationary distribution. We measure the rate
of convergence in terms of the total variation distance and
explore the intimate connection between the hitting times and
the so-called mixing time of our Markov process. The mixing
time describes the time required for the distance to stationarity
to become small. It turns out that the mixing time is largely
determined by the time it takes the process to escape from
the second-longest branch in the state space, as formalized
in Theorem V.1 below. In this section, we assume without
loss of generality that the branches are indexed such that
L1 ≥ L2 ≥ · · · ≥ LK , and denote by ∂k the leaf node of the
k-th branch. Also, we attach the starting state X(0) = x ∈ Ω
as a superscript to our notation for the Markov process, and
thus write (Xx

t )t≥0.

A. Main result

Our objective is to bound the maximal distance over x ∈ Ω,
measured in terms of total variation, between the distribution
at time t and the stationary distribution:

d(t) := max
x∈Ω
‖P {Xx

t ∈ ·} − π‖TV.

We define the mixing time of our process as

tmix(ε, ν) = inf{t ≥ 0 : d(t) ≤ ε}.

Theorem V.1. The mixing time of the Markov process (Xt)t≥0

satisfies

tmix(ε, ν) = Θ(νL2−1),

i.e. ∃C1(ε), C2(ε) > 0 ∃ ν0 > 0 such that for all ν > ν0

C1(ε) νL2−1 ≤ tmix(ε, ν) ≤ C2(ε) νL2−1.

Theorem V.1 shows that it can take an extremely long
time for the process (Xt)t≥0 to reach stationarity, especially
when ν is large. Such a long mixing time is typically due to
the process being stuck for a considerably period in one of
the components, and thus not visiting the states in the other
components. This is particularly relevant when in the network
has two or more dominant components which together attract
the entire probability mass in the limit as ν →∞. Indeed, in
this case the mixing time provides an indication how long it
takes for a certain fairness among the dominant components to
occur. We will prove Theorem V.1 by deriving an upper bound
for d(t) using coupling in Subsection V-B and a matching
lower bound for d(t) using the bottleneck ratio and the notion
of conductance in Subsection V-C.

B. Upper bound using coupling

It can be easily established that

d(t) ≤ d̄(t) := max
x,y∈Ω

‖P {Xx
t ∈ ·} − P {Xy

t ∈ ·} ‖TV.

We consider d̄(t) instead of d(t), because it can be bounded
using a standard coupling technique. Consider all couplings
of the processes (Xx

t , X
y
t ) with the property that both (Xx

t )
and (Xy

t ) are Markov processes that have the same generator.
Moreover, assume that the coupling is such that the two

processes stay together at all times after they have met for
the first time. Under these assumptions, we have that

‖P {Xx
t ∈ ·} − P {Xy

t ∈ ·} ‖TV

= max
A⊆Ω
|P {Xx

t ∈ A} − P {Xy
t ∈ A} |

= max
A⊆Ω

P {Xx
t ∈ A,X

y
t 6∈ A}

≤ P {Xx
t 6= Xy

t } = P
{
τx,ycouple > t

}
,

where the coupling time τx,ycouple = min{t ≥ 0 : Xx
t = Xy

t }
denotes the first time the two processes (Xx

t ) and (Xy
t ) meet.

Therefore, d(t) ≤ d̄(t) ≤ maxx,y∈Ω P
{
τx,ycouple > t

}
, and the

strength of this coupling inequality depends of course heavily
on the choice of the coupling.

We now introduce a birth-and-death process (Mt)t≥0 that
will play a crucial role in our coupling. Let (Mt)t≥0 describe
the position of a particle that lives only on the two longest
branches of the state space C1 ∪ {0} ∪ C2, starts in the leaf
node ∂2, and moves within the two branches according to the
same transition rates as (Xt)t≥0. Call the particle that moves
according to (Mt)t≥0 particle 0. Consider also a particle 1
and particle 2 whose positions are governed by the coupled
Markov process (Xx

t , X
y
t ). To be more specific, we denote the

exact position of particle i at time t by (Ki
t , L

i
t), i = 0, 1, 2,

with Ki
t the branch and Lit the level.

Proposition V.2. For all x, y ∈ Ω, the coupling time τx,ycouple,
with x = (k1, l1) and y = (k2, l2) is stochastically bounded
from above by the absorption time T∂2,∂1 of state ∂1 of
the continuous-time birth-and-death process (Mt)t≥0 starting
from state M0 = ∂2.

Proof: The coupling is such that particles 1 and 2 stay
together at all times after they have met for the first time.
Before that time, whenever a particle i (i = 1, 2) resides
in C1 ∪ C2, it is coupled to particle 0 in the following way:
whenever particle 0 moves towards the root, particle i moves
towards the root. In order to construct this coupling, we
introduce a Poisson clock with rate L1. When the clock ticks,
we first generate a [0, 1] uniform random variable U and then
do the following: move particle i down one level (towards the
root) if U < Lit/L1; also move particle 0 down one level
if U < L0

t/L1. This coupling ensures that when L0
t = Lit

(i = 1, 2) and particle 0 moves down one level, then so
does particle i. A consequence of the above coupling is that
whenever particle 0 enters C1 both particle 1 and particle 2
reside in C1. Extend the coupling by assuming that when
particle 0 meets a particle i (i = 1, 2) in some state in C1,
the two particles keep making the same transitions as long as
they are in C1. Hence, inevitably, by the time particle 0 reaches
∂1, the particles 1 and 2 are coupled.

Since, for every ν > 0 and for all x, y ∈ Ω, τx,ycouple(ν) ≤st

T∂2,∂1(ν), we arrive at the following result:

d(t) ≤ d̄(t) ≤ P {T∂2,∂1(ν) > t} ≤ ET∂2,∂1(ν)

t
. (12)

It then follows immediately that tmix(ε, ν) ≤ ε−1ET∂2,∂1(ν).



Using Theorem IV.1, we thus obtain the following upper
bounds on the distance to stationarity and the mixing time.

Proposition V.3. For the Markov process (Xt)t≥0 the maxi-
mal total variation distance is bounded by

d(t) ≤ ET∂2,∂1(ν)

t
∼ 1

t

(
L1 + L2

L1L2

)
νL2−1, ν →∞,

and the mixing time is bounded by

tmix(ε, ν) ≤ 1

ε
ET∂2,∂1(ν) ∼ 1

ε

(
L1 + L2

L1L2

)
νL2−1, ν →∞.

C. Lower bound exploiting the bottleneck

Consider the activity process (Xt)t≥0 with activation rate
ν. For S ⊆ Ω, let π(S) :=

∑
(k,l)∈S π(k,l)(ν) be the

stationary probability of S. Define the flow rate out of S as
Q(S, Sc) :=

∑
(k,l)∈S,(j,m)∈Sc π(k,l)(ν)q((k, l), (j,m)) and

the conductance of S as Φ(S) := Q(S, Sc)/π(S).

The conductance of the process (Xt)t≥0 is defined as

Φ∗ := min
S :π(S)≤1/2

Φ(S).

All the quantities we just defined depend on ν, but we
suppress it for conciseness.

The following result, valid for any Markov process on a
finite state space Ω with conductance Φ∗, shows how the
conductance of the process yields a lower bound on the mixing
time. It is a continuous-time version of Theorem 7.3 in [27]
and since the proof is quite similar, it is omitted.

Lemma V.4. For ε ∈
(
0, 1

4

)
, tmix(ε) ≥

(
1
2 − 2ε

)
1

Φ∗
.

We now exploit the fact that our activity process on the
state space Ω has a geometric feature usually referred to
as bottleneck, that strongly influences the mixing time. This
bottleneck indeed makes some parts of Ω difficult to reach,
resulting in a small conductance. As it turns out, C2 will be
the bottleneck.

Proposition V.5. The conductance of C2 satisfies

Φ(C2) ∼ L2 ν
1−L2 , ν →∞,

and hence, for ε ∈
(
0, 1

4

)
,

tmix(ε, ν) ≥
(1

2
− 2ε

) 1

L2
νL2−1, ν →∞. (13)

Proof: Since C1 ∪ {0} will have at least half of the
probability mass for ν sufficiently large, it is clear that
π(C2) ≤ 1/2 when ν → ∞. From (2) it follows that
if l and m belong to the same component k of size L,
then π(k,m)(ν)

π(k,l)(ν) = l! (L−l)!
m! (L−m)! ν

m−l, as ν → ∞. Thus the
conductance of C2 satisfies

Φ(C2) =
π(2,1)(ν) · 1∑L2

l=1 π(2,l)(ν)
=

π(2,1)(ν)

π(2,L2)(ν)∑L2

l=1
π(2,l)(ν)

π(2,L2)(ν)

∼ L2 ν
1−L2 .

Then Lemma V.4 gives the lower bound (13), since by
definition Φ∗ ≤ Φ(C2).

VI. CONCLUSION AND EXTENSIONS

We have examined transient throughput characteristics and
associated starvation effects in CSMA networks in terms of
the transition times between dominant activity states. We
established how the magnitude of the transition time scales
with the activation rate and the sizes of the various network
components in partite interference graphs. We also proved that
in several cases the scaled transition time has an asymptotically
exponential distribution and discussed the connection with
related exponentiality results for rare events and meta-stability
effects in statistical physics. In addition, we investigated the
convergence rate to equilibrium of the activity process in terms
of mixing times.

In the present paper we have focused on partite interference
graphs with uniform activation rates, giving rise to a star-
shaped state space, but most of the methods and results
extend to more general networks, as long as there is a
unique path between any two activity states. For example,
we could allow for the branches to be general trees, with
Mk,l nodes in the k-th tree at distance l from the root, and
transition rates bk,lfk,l(ν) and dk,l away from and towards
the root, respectively. The node-dependent functions fk,l(ν)
are particularly relevant, since taking fk,l(ν) = ν1/Lk could
for example serve to balance the long-term throughputs in
the various components. In those cases, the expectation of
the transition time will scale differently, but most of the
distributional results for the scaled transition time continue to
hold, even though qualitatively different scenarios arise, with
some branches being visited for relatively short periods but an
overwhelmingly large number of times.
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APPENDIX

A. Proof of Lemma II.3

Order the state space as Ω = {L,L − 1, . . . , 1, 0} and
consider the generator matrix Q(ν) of the process (Xt)t≥0

with 0 an absorbing state. That is,

Q(ν) =


qL(ν) L 0
ν qL−1(ν) L− 1

. . . . . . . . .
(L− 1)ν q1(ν) 1

0 0 0

 ,
where the diagonal elements are ql(ν) = −(L − l)ν − l for
l = 1, . . . , L. Write Q(ν) as

Q(ν) =

(
T(ν) t(ν)
0 0

)
,

where T(ν) is an L × L invertible matrix. Since the char-
acteristic polynomials of −Q(ν) and −T(ν) satisfy the re-
lation p−Q(ν)(z) = −z p−T(ν)(z), the spectrum of −Q(ν)
consists of that of −T(ν) plus the eigenvalue zero with
multiplicity one. Denote by D(ν) the L×L diagonal matrix,
whose diagonal entries are {

√
θl(ν)}1i=L, where the θ’s are

the so-called potential coefficients, defined as θL(ν) = 1
and θl−1(ν) = l

(L−l)ν θl(ν). The L × L matrix G(ν) =

−D(ν)1/2 T(ν)D(ν)−1/2 is tridiagonal and symmetric with
diagonal entries gl,l(ν) = qL−l+1(ν) and gl,l+1(ν) =

gl+1,l(ν) = −
√
l · (L− l + 1)ν. Since G(ν) is similar to

−T(ν), they have the same spectrum. Denote by D(p,R)
the closed disc centered in p with radius R, i.e. D(p,R) =
{z ∈ C : |z − p| ≤ R}. Consider the Gershgorin discs
{Dl(ν)}Ll=1 of G(ν), defined as Dl(ν) := D(−ql(ν), Rl(ν)),
where the radius Rl(ν) is the sum of the absolute values of
the non-diagonal entries in the L− l+ 1-th row, i.e. Rl(ν) :=∑
m 6=L−l+1 |gL−l+1,m(ν)|. Then

DL(ν) = D(L,
√
Lν),

DL−1(ν) = D(L− 1 + ν,
√
Lν +

√
2(L− 1)ν),

. . .

D2(ν) = D(2 + (L− 2)ν,
√

3(L− 2)ν +
√

2(L− 1)ν),

D1(ν) = D(1 + (L− 1)ν,
√

2(L− 1)ν).

We now exploit the second Gershgorin circle theorem,
which is reproduced here for completeness.

Theorem. If the union of j Gershgorin discs of a real
r × r matrix A is disjoint from the union of the other r − j
Gershgorin discs, then the former union contains exactly j
and the latter the remaining r − j eigenvalues of A.

In our case, for ν sufficiently large, the disc DL(ν) does
not intersect with the union

⋃L−1
l=1 Dl(ν), thus the smallest

eigenvalue α1(ν) lies in DL(ν) and the other L − 1 ones in⋃L−1
l=1 Dl(ν). Hence, for ν sufficiently large, α1(ν) ≤ L+

√
Lν

and αi(ν) ≥ (L − 1) + ν −
√
ν(
√
L +

√
2(L− 1)) for

i = 2, . . . , L. Therefore, 0 < α1(ν)
αi(ν) ≤

L+
√
Lν

ν−
√
ν(
√
L+
√

2(L−1))
,

and so limν→∞ α1(ν)/αi(ν) = 0 for i = 2, . . . , L. Hence,

ETL,0(ν) · α1(ν) = 1 +

L∑
i=2

α1(ν)

αi(ν)
→ 1, ν →∞,

while for 2 ≤ i ≤ L,

ETL,0(ν) · αi(ν) >
αi(ν)

α1(ν)
→∞, ν →∞.

B. Proof of Proposition III.6
Using ESM (ν) = EM · EX(ν), gives

SM (ν)

ESM (ν)
=

∑M
i=1Xi(ν)

EMEX(ν)
=

1

EM

M∑
i=1

Xi(ν)

EXi(ν)
.

Thus the Laplace transform of SM/ESM may be written as

LSM (ν)/ESM (ν)(s) = L∑M
i=1Xi(ν)/EXi(ν)

( s

EM

)
= GM

(
LXi(ν)/EXi(ν)

( s

EM

))
,

where GM (z) = E(zM ). The assumption X(ν)/EX(ν)
d−→ Y

implies that limν→∞ LXi(ν)/EXi(ν)(t) = LY (t) for all t ≥ 0
and i ∈ N. Hence

lim
ν→∞

LSM (ν)/ESM (ν)(s) = lim
ν→∞

GM

(
LXi(ν)/EXi(ν)

( s

EM

))
= GM

(
LY
( s

EM

))
,

which is the Laplace transform of 1
EM

∑M
i=1 Yi. Invoking the

continuity theorem for Laplace transforms concludes the proof.


