127 research outputs found

    Fatigue response of notched laminates subjected to tension-compression cyclic loads

    Get PDF
    The fatigue response of a ((0/45/90/-45)(sub s))(sub 4) T300-5208 graphite-epoxy laminate with a drilled center-hole subjected to various components of tensile and compressive cyclic loads was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength measurement were used to establish the mechanisms of damage development as well as the effect of such damage on the laminate strength, stiffness and life. Damage modes consisted of transverse matrix cracks, initiating at the hole, in all plies, followed by delamination between plies of different orientation. A characteristic stiffness repsonse during cyclic loading at two load levels was identified and utilized a more reliable indicator of material and residual properties than accumulated cycles. For the load ratios of tension-compression loading, residual tensile strength increased significantly above the virgin strength early in the fatigue life and remained approximately constant to near the end of life. A technique developed for predicting delamination initiation sites along the hole boundary correlated well with experimental evidence

    Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows

    Get PDF
    Composite materials offer significant weight savings in many aerospace applications. The toughness of the interface of fibers crossing at different angles often determines failure of composite components. A method for toughening the interface in fabric and filament wound components using directly electrospun thermoplastic nanofiber on carbon fiber tow is presented. The method was first demonstrated with limited trials, and then was scaled up to a continuous lab scale process. Filament wound tubes were fabricated and tested using unmodified baseline towpreg material and nanofiber coated towpreg

    Mixing divalent ionic liquids : effects of charge and side-chains

    Get PDF
    Funding Information: EB acknowledges UK Engineering and Physical Sciences Research Council for funding of doctoral studies, MCG and LP thank the Institute of Chemistry at Clermont-Ferrand for the use of the densimeter and the viscometer. MCG and AvdB acknowledge the financial support of the project IDEXLYON of the University of Lyon (ANR-16-IDEX-0005). TW acknowledges an ERC Advanced Investigator Grant for funding. Publisher Copyright: © the Owner Societies 2021.We have prepared novel divalent ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide anion where two charged imidazolium groups in the cations are either directly bound to each other or linked by a single atom. We assessed the influence of the side-chain functionality and divalency on their physical properties and on the thermodynamics of mixing. The results indicate that shortening the spacer of a divalent IL reduces its thermal stability and increases its viscosity. Mixtures of divalent and monovalent ILs show small but significant deviations from ideality upon mixing. These deviations appear to depend primarily on the (mis)match of the nature and length of the cation side-chain. The non-ideality imposed by mixing ILs with different side-chains appears to be enhanced by the increase in formal charge of the cations in the mixture.publishersversionPeer reviewe

    Multicenter evaluation of the clinical utility of laparoscopy-assisted ERCP in patients with Roux-en-Y gastric bypass

    Get PDF
    Background and Aims The obesity epidemic has led to increased use of Roux-en-Y gastric bypass (RYGB). These patients have an increased incidence of pancreaticobiliary diseases yet standard ERCP is not possible due to surgically altered gastroduodenal anatomy. Laparoscopic-ERCP (LA-ERCP) has been proposed as an option but supporting data are derived from single center small case-series. Therefore, we conducted a large multicenter study to evaluate the feasibility, safety, and outcomes of LA-ERCP. Methods This is retrospective cohort study of adult patients with RYGB who underwent LA-ERCP in 34 centers. Data on demographics, indications, procedure success, and adverse events were collected. Procedure success was defined when all of the following were achieved: reaching the papilla, cannulating the desired duct and providing endoscopic therapy as clinically indicated. Results A total of 579 patients (median age 51, 84% women) were included. Indication for LA-ERCP was biliary in 89%, pancreatic in 8%, and both in 3%. Procedure success was achieved in 98%. Median total procedure time was 152 minutes (IQR 109-210) with median ERCP time 40 minutes (IQR 28-56). Median hospital stay was 2 days (IQR 1-3). Adverse events were 18% (laparoscopy-related 10%, ERCP-related 7%, both 1%) with the clear majority (92%) classified as mild/moderate whereas 8% were severe and 1 death occurred. Conclusion Our large multicenter study indicates that LA-ERCP in patients with RYGB is feasible with a high procedure success rate comparable with that of standard ERCP in patients with normal anatomy. ERCP-related adverse events rate is comparable with conventional ERCP, but the overall adverse event rate was higher due to the added laparoscopy-related events

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nondestructive Evaluation of Fiber Composite Laminates by Thermoelastic Emission

    Get PDF
    During the rapid cyclic loading of a structure (≥ .5 Hz), the cyclic variation of surface temperature can be measured with infrared radiometry. The temperature variation is related to the reversible, adlabatic deformation of the material. Adiabatic thermography differs from disslpative thermography, where temperature variations are associated primarily with dissipated energy rather than stored energy. The radiometer system used in the present investigation is capable of resolving local stresses that reflect global stress distributions and macroscopic variations in material properties, including flaws and damage. The present paper emphasizes fundamental aspects of the technique for the nondestructive evaluation of fiber-reinforced composite laminates.</p
    corecore