40 research outputs found

    Constraints on the parity-violating couplings of a new gauge boson

    Get PDF
    High-energy particle physics experiments allow for the possible existence of a new light, very weakly coupled, neutral gauge boson (the U boson). This one permits for light (spin-1/2 or spin-0) particles to be acceptable Dark Matter candidates, by inducing sufficient (stronger than weak) annihilation cross sections into e+e-. They could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge. Such a new interaction may have important consequences, especially at lower energies. Parity-violation atomic-physics experiments provide strong constraints on such a U boson, if its couplings to quarks and electrons violate parity. With the constraints coming from an unobserved axionlike behaviour of this particle, they privilegiate a pure vector coupling of the U boson to quarks and leptons, unless the corresponding symmetry is broken sufficiently above the electroweak scale.Comment: 6 page

    Clarifying the covariant formalism for the SZ effect due to relativistic non-thermal electrons

    Full text link
    We derive the covariant formalism associated with the relativistic Sunyaev-Zel'dovich effect due to a non-thermal population of high energy electrons in clusters of galaxies. More precisely, we show that the formalism proposed by Wright in 1979, based on an empirical approach (and widely used in the literature) to compute the inverse Compton scattering of a population of relativistic electrons on CMB photons, can actually be re-interpreted as a Boltzmann-like equation, in the single scattering approximation.Comment: 12 pages. Error in the interpretation of E. Wright's earlier results corrected. Accepted for publication in PR

    PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy

    Full text link
    Searches for Dark Matter (DM) particles with indirect detection techniques have reached important milestones with the precise measurements of the anti-proton and gamma-ray spectra, notably by the PAMELA and FERMI-LAT experiments. While the gamma-ray results have been used to test the thermal Dark Matter hypothesis and constrain the Dark Matter annihilation cross section into Standard Model (SM) particles, the anti-proton flux measured by the PAMELA experiment remains relatively unexploited. Here we show that the latter can be used to set a constraint on the neutralino-chargino mass difference. To illustrate our point we use a Supersymmetric model in which the gauginos are light, the sfermions are heavy and the Lightest Supersymmetric Particle (LSP) is the neutralino. In this framework the W^+ W^- production is expected to be significant, thus leading to large anti-proton and gamma-ray fluxes. After determining a generic limit on the Dark Matter pair annihilation cross section into W^+ W^- from the anti-proton data only, we show that one can constrain scenarios in which the neutralino-chargino mass difference is as large as ~ 20 GeV for a mixed neutralino (and intermediate choices of the anti-proton propagation scheme). This result is consistent with the limit obtained by using the FERMI-LAT data. As a result, we can safely rule out the pure wino neutralino hypothesis if it is lighter than 450 GeV and constitutes all the Dark Matter.Comment: 22page

    Light neutralino dark matter in the MSSM and its implication for LHC searches for staus

    Get PDF
    It was shown in a previous study that a lightest neutralino with mass below 30 GeV was severely constrained in the minimal supersymmetric standard model (MSSM), unless it annihilates via a light stau and thus yields the observed dark matter abundance. In such a scenario, while the stau is the next-to-lightest supersymmetric particle (NLSP), the charginos and the other neutralinos as well as sleptons of the first two families are also likely to be not too far above the mass bounds laid down by the Large Electron Positron (LEP) collider. As the branching ratios of decays of the charginos and the next-to-lightest neutralino into staus are rather large, one expects significant rates of tau-rich final states in such a case. With this in view, we investigate the same-sign ditau and tri-tau signals of this scenario at the Large Hadron Collider (LHC) for two MSSM benchmark points corresponding to light neutralino dark matter. The associated signal rates for these channels are computed, for the centre-of-mass energy of 14 TeV. We find that both channels lead to appreciable rates if the squarks and the gluino are not too far above a TeV, thus allowing to probe scenarios with light neutralinos in the 14 TeV LHC run with 10-100 fb^{-1}.Comment: 19p, 4 Fig

    Kination Dominated Reheating and Cold Dark Matter Abundance

    Full text link
    We consider the decay of a massive particle under the complete or partial domination of the kinetic energy density generated by a quintessential exponential model and we impose a number of observational constraints originating from nucleosynthesis, the present acceleration of the universe and the dark-energy-density parameter. We show that the presence of kination causes a prolonged period during which the temperature is frozen to a plateau value, much lower than the maximal temperature achieved during the process of reheating in the absence of kination. The decoupling of a cold dark matter particle during this period is analyzed, its relic density is calculated both numerically and semi-analytically and the results are compared with each other. Using plausible values (from the viewpoint of particle models) for the mass and the thermal averaged cross section times the velocity of the cold relic, we investigate scenaria of equilibrium or non-equilibrium production. In both cases, acceptable results for the cold dark matter abundance can be obtained, by constraining the initial energy density of the decaying particle, its decay width, its mass and the averaged number of the produced cold relics. The required plateau value of the temperature is, in most cases, lower than about 40 GeVComment: Final versio
    corecore