308 research outputs found

    SOFIARoot: Simulation of the SOFIA/ANDES Setup

    Get PDF

    Simulations and analysis tools for charge-exchange (d,2He)(d,{}^{2}\text{He}) reactions in inverse kinematics with the AT-TPC

    Full text link
    Charge-exchange (d,2He)(d,{}^{2}\text{He}) reactions in inverse kinematics at intermediate energies are a very promising method to investigate the Gamow-Teller transition strength in unstable nuclei. A simulation and analysis software based on the ATTPCROOT\rm{\scriptsize ATTPCROOT} package was developed to study these type of reactions with the active-target time projection chamber (AT-TPC). The simulation routines provide a realistic detector response that can be used to understand and benchmark experimental data. Analysis tools and correction routines can be developed and tested from simulations in ATTPCROOT\rm{\scriptsize ATTPCROOT}, because they are processed in the same way as the real data. In particular, we study the feasibility of using coincidences with beam-like particles to unambiguously identify the (d,2He)(d,{}^{2}\text{He}) reaction channel, and to develop a kinematic fitting routine for future applications. More technically, the impact of space-charge effects in the track reconstruction, and a possible correction method are investigated in detail. This analysis and simulation package constitutes an essential part of the software development for the fast-beams program with the AT-TPC

    Microscopic View on Short-Range Wetting at the Free Surface of the Binary Metallic Liquid Gallium-Bismuth: An X-ray Reflectivity and Square Gradient Theory Study

    Get PDF
    We present an x-ray reflectivity study of wetting at the free surface of the binary liquid metal gallium-bismuth (Ga-Bi) in the region where the bulk phase separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the evolution of the microscopic structure of wetting films of the Bi-rich, low-surface-tension phase along different paths in the bulk phase diagram. A balance between the surface potential preferring the Bi-rich phase and the gravitational potential which favors the Ga-rich phase at the surface pins the interface of the two demixed liquid metallic phases close to the free surface. This enables us to resolve it on an Angstrom level and to apply a mean-field, square gradient model extended by thermally activated capillary waves as dominant thermal fluctuations. The sole free parameter of the gradient model, i.e. the so-called influence parameter, Îș\kappa, is determined from our measurements. Relying on a calculation of the liquid/liquid interfacial tension that makes it possible to distinguish between intrinsic and capillary wave contributions to the interfacial structure we estimate that fluctuations affect the observed short-range, complete wetting phenomena only marginally. A critical wetting transition that should be sensitive to thermal fluctuations seems to be absent in this binary metallic alloy.Comment: RevTex4, twocolumn, 15 pages, 10 figure

    Search for {\eta}'(958)-nucleus bound states by (p,d) reaction at GSI and FAIR

    Get PDF
    The mass of the {\eta}' meson is theoretically expected to be reduced at finite density, which indicates the existence of {\eta}'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the {\eta}' production threshold. The overview of the experimental situation is given and the current status is discussed.Comment: 6 pages, 3 figures; talk at II Symposium on applied nuclear physics and innovative technologies, September 24th - 27th, 2014, Jagiellonian University, Krak\'ow Poland; to appear in Acta Physica Polonica

    Spectroscopy of ηâ€Č\eta'-nucleus bound states at GSI and FAIR --- very preliminary results and future prospects ---

    Get PDF
    The possible existence of \eta'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the \eta' mass at finite density, which is expected to be reduced because of the interplay between the UA(1)U_A(1) anomaly and partial restoration of chiral symmetry. The investigation of the C(p,d) reaction at GSI and FAIR, as well as an overview of the experimental program at GSI and future plans at FAIR are discussed.Comment: 7 pages, 3 figures; talk at the International Conference on Exotic Atoms and Related Topics (EXA2014), Vienna, Austria, 15-19 September 2014. in Hyperfine Interactions (2015

    Direct Determination of Fission-Barrier Heights Using Light-Ion Transfer in Inverse Kinematics

    Get PDF
    We demonstrate a new technique for obtaining fission data for nuclei away from ÎČ\beta-stability. These types of data are pertinent to the astrophysical \textit{r-}process, crucial to a complete understanding of the origin of the heavy elements, and for developing a predictive model of fission. These data are also important considerations for terrestrial applications related to power generation and safeguarding. Experimentally, such data are scarce due to the difficulties in producing the actinide targets of interest. The solenoidal-spectrometer technique, commonly used to study nucleon-transfer reactions in inverse kinematics, has been applied to the case of transfer-induced fission as a means to deduce the fission-barrier height, among other variables. The fission-barrier height of 239^{239}U has been determined via the 238^{238}U(dd,pfpf) reaction in inverse kinematics, the results of which are consistent with existing neutron-induced fission data indicating the validity of the technique

    The ASY-EOS experiment at GSI: investigating the symmetry energy at supra-saturation densities

    Get PDF
    The elliptic-flow ratio of neutrons with respect to protons in reactions of neutron rich heavy-ions systems at intermediate energies has been proposed as an observable sensitive to the strength of the symmetry term in the nuclear Equation Of State (EOS) at supra-saturation densities. The recent results obtained from the existing FOPI/LAND data for 197^{197}Au+197^{197}Au collisions at 400 MeV/nucleon in comparison with the UrQMD model allowed a first estimate of the symmetry term of the EOS but suffer from a considerable statistical uncertainty. In order to obtain an improved data set for Au+Au collisions and to extend the study to other systems, a new experiment was carried out at the GSI laboratory by the ASY-EOS collaboration in May 2011.Comment: Talk given by P. Russotto at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Probing the quadrupole transition strength of C15 via deuteron inelastic scattering

    Get PDF
    Deuteron elastic scattering from 15^{15}C and inelastic scattering reactions to the first excited state of 15^{15}C were studied using a radioactive beam of 15^{15}C in inverse kinematics. The scattered deuterons were measured using HELIOS. The elastic scattering differential cross sections were analyzed using the optical model. A matter deformation length Ύd = 1.04(11) fm has been extracted from the differential cross sections of inelastic scattering to the first excited state. The ratio of neutron and proton matrix elements Mn/Mp = 3.6(4) has been determined from this quadrupole transition. Neutron effective charges and core-polarization parameters of 15^{15}C were determined and discussed. Results from ab initio no-core configuration interaction calculations were also compared with the experimental observations. This result supports a moderate core decoupling effect of the valence neutron in 15^{15}C similarly to its isotone 17^{17}O, in line with the interpretation of other neutron-rich carbon isotopes.Deuteron elastic scattering from 15C and inelastic scattering reactions to the first excited state of 15C were studied using a radioactive beam of 15C in inverse kinematics. The scattered deuterons were measured using HELIOS. The elastic scattering differential cross sections were analyzed using the optical model. A matter deformation length Ύd = 1.04(11) fm has been extracted from the differential cross sections of inelastic scattering to the first excited state. The ratio of neutron and proton matrix elements Mn/Mp = 3.6(4) has been determined from this quadrupole transition. Neutron effective charges and core-polarization parameters of 15C were determined and discussed. Results from ab-initio no-core configuration interaction calculations were also compared with the experimental observations. This result supports a moderate core decoupling effect of the valence neutron in 15C similarly to its isotone 17O, in line with the interpretation of other neutron-rich carbon isotopes
    • 

    corecore