1,026 research outputs found

    Origin of Rashba-splitting in the quantized subbands at Bi2Se3 surface

    Full text link
    We study the band structure of the Bi2Se3\text{Bi}_2\text{Se}_3 topological insulator (111) surface using angle-resolved photoemission spectroscopy. We examine the situation where two sets of quantized subbands exhibiting different Rashba spin-splitting are created via bending of the conduction (CB) and the valence (VB) bands at the surface. While the CB subbands are strongly Rashba spin-split, the VB subbands do not exhibit clear spin-splitting. We find that CB and VB experience similar band bending magnitudes, which means, a spin-splitting discrepancy due to different surface potential gradients can be excluded. On the other hand, by comparing the experimental band structure to first principles LMTO band structure calculations, we find that the strongly spin-orbit coupled Bi 6pp orbitals dominate the orbital character of CB, whereas their admixture to VB is rather small. The spin-splitting discrepancy is, therefore, traced back to the difference in spin-orbit coupling between CB and VB in the respective subbands' regions

    Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections

    Full text link
    Motivated by recent scanning tunneling microscopy experiments on single magnetic impurities on superconducting surfaces, we present here a comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound states and (multiple) Andreev reflections. Our theory is based on a combination of an Anderson model with broken spin degeneracy and nonequilibrium Green's function techniques that allows us to describe the electronic transport through a magnetic impurity coupled to superconducting leads for arbitrary junction transparency. Using this combination we are able to elucidate the different tunneling processes that give a significant contribution to the subgap transport. In particular, we predict the occurrence of a large variety of Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly differ from the standard Andreev processes in non-magnetic systems. Moreover, we provide concrete guidelines on how to experimentally identify the subgap features originating from these tunneling events. Overall, our work provides new insight into the role of the spin degree of freedom in Andreev transport physics.Comment: 15 pages, 10 figure

    Tracking primary thermalization events in graphene with photoemission at extreme timescales

    Full text link
    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is instead predicted to be dominant at the earliest time delays. Here, <8<8 femtosecond extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time- and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme timescales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for PetaHertz electronics.Comment: 16 pages, 8 figure

    Unusual electronic ground state of a prototype cuprate: band splitting of single CuO_2-plane Bi_2 Sr_(2-x) La_x CuO_(6+delta)

    Full text link
    By in-situ change of polarization a small splitting of the Zhang-Rice singlet state band near the Fermi level has been resolved for optimum doped (x=0.4) Bi2_{2}Sr2x_{2-x}Lax_{x}CuO6+δ_{6+\delta} at the (pi,0)-point (R.Manzke et al. PRB 63, R100504 (2001). Here we treat the momentum dependence and lineshape of the split band by photoemission in the EDC-mode with very high angular and energy resolution. The splitting into two destinct emissions could also be observed over a large portion of the major symmetry line Γ\GammaM, giving the dispersion for the individual contributions. Since bi-layer effects can not be present in this single-layer material the results have to be discussed in the context of one-particle removal spectral functions derived from current theoretical models. The most prominent are microscopic phase separation including striped phase formation, coexisting antiferromagnetic and incommensurate charge-density-wave critical fluctuations coupled to electrons (hot spots) or even spin charge separation within the Luttinger liquid picture, all leading to non-Fermi liquid like behavior in the normal state and having severe consequences on the way the superconducting state forms. Especially the possibilty of observing spinon and holon excitations is discussed.Comment: 5 pages, 4 figure

    Charge Stripping Reactions in Mass Spectrometry: A Study of Diatomic and Triatomic Inorganic and Organic Ions

    Get PDF
    Charge stripping reactions of the type m• + N--+ m2• + N + ehave been studied for a variety of diatomic and triatomic inorganic and organic ions. Ionisation energies of the m• ions, IE (m+--+ m2• ), have been determined, most of them for the first time. The method is fast and straightforward; it is applicable to both molecular and fragment .ions. The relative cross-sections for the charge stripping processes have been also determined; they show llrge variations from one species to another. Cases of possible interferences, which are fairly infrequent, are described and discussed

    The Use of Renewable and Alternative Fuel in the Heavy Clay Industry

    Get PDF
    Abstract The heavy clay industry brick is in many countries a very important economic factor with far reaching financial and environmental impacts. In the industrialized countries the use of alternative fuels in the heavy clay industry is rather limited.The European brick industries common current research activity is mainly focused on synthgas from waste streams. In-house research activity by single brick companies does, at least in Europe, not take place at the moment. The situation in the developing and industrializing countries is far different: The use of alternative,fossil and renewable, fuels in these countries is still wide spread. The use of such fuels does sometimes have severe negative impacts on the environment. This paper gives an overview of the use of various renewable and alternative fuels in the heavy clay industry in several countries and the environmental and financial impacts these fuels have or might have on the operation of a typical installation in various parts of the world (Maghreb, Europe, USA, Australia,India, Vietnam). Two examples in which alternative fuels have been or are used, one in an industrializing and one in an industrialized country, are briefly presented. A comparative product life cycle analysis, LCA, is presented

    Hidden one-dimensional electronic structure and non-Fermi liquid angle resolved photoemission line shapes of η\eta-Mo4_4O11_{11}

    Full text link
    We report angle resolved photoemission (ARPES) spectra of η\eta-Mo4_4O11_{11}, a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K. We have directly observed the ``hidden one-dimensional (hidden-1d)'' Fermi surface and an anisotropic gap opening associated with the 109 K transition, in agreement with the band theoretical description of the CDW transition. In addition, as in other hidden-1d materials such as NaMo6_6O17_{17}, the ARPES line shapes show certain anomalies, which we discuss in terms of non-Fermi liquid physics and possible roles of disorder.Comment: 3 figures; Erratum added to include missed reference

    Tuning independently Fermi energy and spin splitting in Rashba systems: Ternary surface alloys on Ag(111)

    Full text link
    By detailed first-principles calculations we show that the Fermi energy and the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can be independently tuned by choosing the concentrations of Bi and Pb. The findings are explained by three fundamental mechanisms, namely the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and band filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba energy, and the Fermi energy of the surface states in the complete range of concentrations. Our results suggest to investigate experimentally effects which rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting and band filling.Comment: 11 pages, 3 figure
    corecore