80 research outputs found
Quantum-state transfer in staggered coupled-cavity arrays
We consider a coupled-cavity array, where each cavity interacts with an atom
under the rotating-wave approximation. For a staggered pattern of inter-cavity
couplings, a pair of field normal modes each bi-localized at the two array ends
arise. A rich structure of dynamical regimes can hence be addressed depending
on which resonance condition between the atom and field modes is set. We show
that this can be harnessed to carry out high-fidelity quantum-state transfer
(QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the
array into coupled modules of smaller length, the QST time can be substantially
shortened without significantly affecting the fidelity.Comment: 12 pages, 8 figure
Using the J1-J2 Quantum Spin Chain as an Adiabatic Quantum Data Bus
This paper investigates numerically a phenomenon which can be used to
transport a single q-bit down a J1-J2 Heisenberg spin chain using a quantum
adiabatic process. The motivation for investigating such processes comes from
the idea that this method of transport could potentially be used as a means of
sending data to various parts of a quantum computer made of artificial spins,
and that this method could take advantage of the easily prepared ground state
at the so called Majumdar-Ghosh point. We examine several annealing protocols
for this process and find similar result for all of them. The annealing process
works well up to a critical frustration threshold.Comment: 14 pages, 13 figures (2 added), revisions made to add citations and
additional discussion at request of referee
Long quantum channels for high-quality entanglement transfer
High-quality quantum-state and entanglement transfer can be achieved in an
unmodulated spin bus operating in the ballistic regime, which occurs when the
endpoint qubits A and B are coupled to the chain by an exchange interaction
comparable with the intrachain exchange. Indeed, the transition amplitude
characterizing the transfer quality exhibits a maximum for a finite optimal
value , where is the channel length. We show that
scales as for large and that it ensures a
high-quality entanglement transfer even in the limit of arbitrarily long
channels, almost independently of the channel initialization. For instance, the
average quantum-state transmission fidelity exceeds 90% for any chain length.
We emphasize that, taking the reverse point of view, should be
experimentally constrained, high-quality transfer can still be obtained by
adjusting the channel length to its optimal value.Comment: 12 pages, 9 figure
Fault-Tolerant Exact State Transmission
We show that a category of one-dimensional XY-type models may enable
high-fidelity quantum state transmissions, regardless of details of coupling
configurations. This observation leads to a fault- tolerant design of a state
transmission setup. The setup is fault-tolerant, with specified thresholds,
against engineering failures of coupling configurations, fabrication
imperfections or defects, and even time-dependent noises. We propose the
implementation of the fault-tolerant scheme using hard-core bosons in
one-dimensional optical lattices.Comment: 5 pages and 4 figure
A petro-chemical study of ancient mortars from the archaeological site of Kyme (Turkey)
Fourteen samples of ancient mortars (joint mortars and plasters) from the archaeological
site of Kyme (Turkey) were studied by optical microscopy (OM), X-ray fluorescence (XRF),
X-ray powder diffraction (XRPD), scanning electron microscopy (SEM-EDS) and micro-
Raman spectroscopy to obtain information about their composition.The study allowed us to
identify a new type of plaster inside the archaeological site of Kyme, not detected by previous
studies of this site, in which vegetable fibers were intentionally added to the mixture. The
combination of a petrographic analysis on thin sections by polarized light microscopy
with a chemical analysis, has allowed us to highlight similarities and differences between
the mortars and to get information about the evolution of constructive techniques in the
archaeological area
Abelian gauge potentials on cubic lattices
The study of the properties of quantum particles in a periodic potential
subject to a magnetic field is an active area of research both in physics and
mathematics; it has been and it is still deeply investigated. In this review we
discuss how to implement and describe tunable Abelian magnetic fields in a
system of ultracold atoms in optical lattices. After discussing two of the main
experimental schemes for the physical realization of synthetic gauge potentials
in ultracold set-ups, we study cubic lattice tight-binding models with
commensurate flux. We finally examine applications of gauge potentials in
one-dimensional rings.Comment: To appear on: "Advances in Quantum Mechanics: Contemporary Trends and
Open Problems", G. Dell'Antonio and A. Michelangeli eds., Springer-INdAM
series 201
When Taekwondo Referees See Red, but It Is an Electronic System That Gives the Points
Previous studies in taekwondo have considered the use of the manual scoring system or the electronic system with only the use of the electronic body protector. The objective of this study was to analyze the relationship between the color protectors and success in 1,327 taekwondo matches from six World Grand Prix Series of two 4-year Olympic periods when electronic body and head protectors are used. In the total sample, the results did not show a relationship between the match outcome and the color of the protectors (p = 0.97, C = 0.001). For the individual six editions, the results showed a positive and strong relationship between wearing blue protectors and winning matches and one between wearing red protectors and winning matches (p = 0.001, C = 0.19; p = 0.001; C = 0.19). Regarding the weight categories, 8 and 5 of 48 showed higher percentages of blue and red winners, respectively. Regarding sex, male competitors showed a positive relationship between blue color and winning the match in 6 of 24 weight categories, and wearing red and winning the match was shown in 2 of 24 weight categories. Female competitors showed a positive relationship between blue color and winning the match in 2 of 24 weight categories, and wearing red and winning the match was shown in 3 of 24 weight categories. When it comes to the influence of being a seeded athlete, the results did show a significant confounding effect on the color of the protectors worn by the winner of the match in 2 of 13 weight categories in which a color effect was observed (p = 0.02, C = 0.28; p = 0.02, C = 0.28). In conclusion, wearing red does not provide a higher chance of winning the match. It seems that seeing red has a stronger effect than wearing red, especially in male contenders. Moreover, being a seeded athlete does not explain the result of the match. It seems that the introduction of the electronic helmet protector, in addition to the electronic body protector, made the scoring system more objective, decreasing the advantage of wearing red in winning matches
Multipartite entanglement transfer in spin chains
We investigate the transfer of genuine multipartite entanglement across a spin-1/2 chain with nearest-neighbour XX-type interaction. We focus on the perturbative regime, where a block of spins is weakly coupled at each edge of a quantum wire, embodying the role of a multiqubit sender and receiver, respectively. We find that high-quality multipartite entanglement transfer is achieved at the same time that three excitations are transferred to the opposite edge of the chain. Moreover, we find that both a finite concurrence and tripartite negativity is attained at much shorter time, making GHZ-distillation protocols feasible. Finally, we investigate the robustness of our protocol with respect to non-perturbative couplings and increasing lengths of the quantum wire
- …