289 research outputs found

    Management of Hypertensive Emergencies in Pediatrics

    Get PDF
    As hypertension becomes more prevalent in the pediatric population, clinicians are more likely to encounter hypertensive emergencies in children, which require pharmacists and physicians to be educated on the therapeutic options for these emergencies. However, the strict governmental requirements on the testing of these drugs in pediatric patients have limited the amount of available evidence on which to base clinical decisions. This review will highlight the available evidence and preferred treatment options for the management of pediatric hypertensive emergencies

    The Characterization of Ribosomal RNA Gene Chromatin from Physarum Polycephalum

    Get PDF
    We have isolated ribosomal RNA gene (rDNA) chromatin from Physarum polycephalum using a nucleolar isolation procedure that minimizes protein loss from chromatin and, subsequently, either agarose gel electrophoresis or metrizamide gradient centrifugation to purify this chromatin fraction (Amero, S. A., Ogle, R. C., Keating, J. L., Montoya, V. L., Murdoch, W. L., and Grainger, R. M. (1988) J. Biol. Chem. 263, 10725-10733). Metrizamide-purified rDNA chromatin obtained from nucleoli isolated according to the new procedure has a core histone/DNA ratio of 0.77:1. The major core histone classes comigrate electrophoretically with their nuclear counterparts on Triton-acid-urea/sodium dodecyl sulfate two-dimensional gels, although they may not possess the extent of secondary modification evident with the nuclear histones. This purified rDNA chromatin also possesses RNA polymerase I activity, and many other nonhistone proteins, including two very abundant proteins (26 and 38 kDa) that may be either ribonucleoproteins or nucleolar matrix proteins. Micrococcal nuclease digestion of the metrizamide-purified rDNA chromatin produces particles containing 145-base pair DNA fragments identical in length to those in total chromatin and which contain both transcribed and nontranscribed rDNA sequences. Some smaller fragments (30, 70, and 110 base pairs) are also seen, but their sequence content is not known. These particles sediment uniformly at 11 S in sucrose gradients containing 15 mM NaCl, and at 4-11 S in gradients containing 0.35 M NaCl. Particles enriched in gene or nontranscribed spacer sequences are not resolved in these sucrose gradients or in metrizamide gradients. Our findings suggest that the rDNA chromatin fraction we have identified contains transcriptionally active genes and that an organized, particle-containing structure exists in active rDNA chromatin

    The Purification of Ribosomal RNA Gene Chromatin from Physarum Polycephalum

    Get PDF
    We have undertaken the purification of ribosomal RNA gene (rDNA) chromatin from the slime mold Physarum polycephalum, in order to study its chromatin structure. In this organism rDNA exists in nucleoli as highly repeated minichromosomes, and one can obtain crude chromatin fractions highly enriched in rDNA from isolated nucleoli. We first developed a nucleolar isolation method utilizing polyamines as stabilization agents that results in a chromatin fraction containing far more protein than is obtained by the more commonly used divalent cation isolation methods. The latter method appears to result in extensive histone loss during chromatin isolations. Two methods were then used for purifying rDNA chromatin from nucleoli isolated by the polyamine procedure. We found that rDNA chromatin migrates as a single band in agarose gels, well separated from other components in the chromatin preparation. Although the utility of this technique is somewhat limited by low yields and by progressive stripping of protein from rDNA chromatin, it can provide useful information about rDNA chromatin protein composition. The application of this technique to the fractionation of gene and spacer chromatin fragments produced by restriction enzyme digestion is discussed. We also found that rDNA chromatin, if RNase-treated, bands discretely in metrizamide equilibrium density gradients with a density lighter than that of non-nucleolar chromatin. These characteristics suggest that we have identified a transcriptionally active rDNA chromatin fraction which possesses a lower protein to DNA ratio than does non-nucleolar chromatin. This technique yields sufficient purified rDNA chromatin for further biochemical studies and does not cause extensive protein stripping. The procedures developed here should be applicable to the analysis of a variety of chromatin fractions in other systems

    Saudi Arabian Y-Chromosome diversity and its relationship with nearby regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human origins and migration models proposing the Horn of Africa as a prehistoric exit route to Asia have stimulated molecular genetic studies in the region using uniparental loci. However, from a Y-chromosome perspective, Saudi Arabia, the largest country of the region, has not yet been surveyed. To address this gap, a sample of 157 Saudi males was analyzed at high resolution using 67 Y-chromosome binary markers. In addition, haplotypic diversity for its most prominent J1-M267 lineage was estimated using a set of 17 Y-specific STR loci.</p> <p>Results</p> <p>Saudi Arabia differentiates from other Arabian Peninsula countries by a higher presence of J2-M172 lineages. It is significantly different from Yemen mainly due to a comparative reduction of sub-Saharan Africa E1-M123 and Levantine J1-M267 male lineages. Around 14% of the Saudi Arabia Y-chromosome pool is typical of African biogeographic ancestry, 17% arrived to the area from the East across Iran, while the remainder 69% could be considered of direct or indirect Levantine ascription. Interestingly, basal E-M96* (n = 2) and J-M304* (n = 3) lineages have been detected, for the first time, in the Arabian Peninsula. Coalescence time for the most prominent J1-M267 haplogroup in Saudi Arabia (11.6 ± 1.9 ky) is similar to that obtained previously for Yemen (11.3 ± 2) but significantly older that those estimated for Qatar (7.3 ± 1.8) and UAE (6.8 ± 1.5).</p> <p>Conclusion</p> <p>The Y-chromosome genetic structure of the Arabian Peninsula seems to be mainly modulated by geography. The data confirm that this area has mainly been a recipient of gene flow from its African and Asian surrounding areas, probably mainly since the last Glacial maximum onwards. Although rare deep rooting lineages for Y-chromosome haplogroups E and J have been detected, the presence of more basal clades supportive of the southern exit route of modern humans to Eurasian, were not found.</p

    Fat dads must not be blamed for their children's health problems

    Get PDF
    The relationship between the parental genomes in terms of the future growth and development of their offspring is not critical. For the majority of the genome the tissue-specific gene expression and epigenetic status is shared between the parents equally, with both alleles contributing without parental bias. For a very small number of genes the rules change and control of expression is restricted to a specific, parentally derived allele, a phenomenon known as genomic imprinting. The insulin-like growth factor 2 (Igf2/IGF2) is a robustly imprinted gene, important for fetal growth in both mice and humans. In utero IGF2 exhibits paternal expression, which is controlled by several mechanisms, including the maternally expressing untranslated H19 gene. In the study by Soubry et al., a correlation is drawn between the IGF2 methylation status in fetal cord blood leucocytes, and the obesity status of the father from whom the active IGF2 allele is derived through his sperm. These data imply that paternal obesity affects the normal IGF2 methylation in the sperm and this in turn alters the expression of IGF2 in the baby

    Genetic Analyses in Small for Gestational Age Newborns

    Get PDF
    Context: Small for gestational age (SGA) can be a result of fetal growth restriction, associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the present study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more CNVs and disturbed methylation and sequence variants may be present in genes known to be associated with fetal growth. Design: A prospective cohort study of subjects with a low birthweight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birthweight below the 1st centile and a control cohort of 24 appropriate for gestational age newborns were studied. Intervention: Array comparative genomic hybridization, genome-wide methylation studies and exome sequencing were performed. Main Outcome Measures The numbers of copy number variations, methylation disturbances and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern and one sequence variant explaining the SGA. Additional methylation disturbances and sequence variants were present 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We conclude that copy number variations, methylation disturbances and sequence variants all contribute to prenatal growth failure. Such genetic workup can be an effective diagnostic approach in SGA newborns

    Independent deposition of heterogeneous nuclear ribonucleoproteins and small nuclear ribonucleoprotein particles at sites of transcription

    Get PDF
    The major nuclear ribonucleoproteins (RNPs) involved in pre-mRNA processing are classified in broad terms either as small nuclear RNPs (snRNPs), which are major participants in the splicing reaction, or heterogeneous nuclear RNPs (hnRNPs), which traditionally have been thought to function in general pre-mRNA packaging. We obtained antibodies that recognize these two classes of RNP in Drosophila melanogaster. Using a sequential immunostaining technique to compare directly the distribution of these RNPs on Drosophila polytene chromosomes, we found that the two patterns were very similar qualitatively but not quantitatively, arguing for the independent deposition of the two RNP types and supporting a role for hnRNP proteins, but not snRNPs, in general transcript packaging

    Ancient Migratory Events in the Middle East: New Clues from the Y-Chromosome Variation of Modern Iranians

    Get PDF
    Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct population

    Identification of the Imprinted KLF14 Transcription Factor Undergoing Human-Specific Accelerated Evolution

    Get PDF
    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage

    Mitochondrial haplogroup N1a phylogeography, with implication to the origin of European farmers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracing the genetic origin of central European farmer N1a lineages can provide a unique opportunity to assess the patterns of the farming technology spread into central Europe in the human prehistory. Here, we have chosen twelve N1a samples from modern populations which are most similar with the farmer N1a types and performed the complete mitochondrial DNA genome sequencing analysis. To assess the genetic and phylogeographic relationship, we performed a detailed survey of modern published N1a types from Eurasian and African populations.</p> <p>Results</p> <p>The geographic origin and expansion of farmer lineages related N1a subclades have been deduced from combined analysis of 19 complete sequences with 166 N1a haplotypes. The phylogeographic analysis revealed that the central European farmer lineages have originated from different sources: from eastern Europe, local central Europe, and from the Near East via southern Europe.</p> <p>Conclusions</p> <p>The results obtained emphasize that the arrival of central European farmer lineages did not occur via a single demic diffusion event from the Near East at the onset of the Neolithic spread of agriculture into Europe. Indeed these results indicate that the Neolithic transition process was more complex in central Europe and possibly the farmer N1a lineages were a result of a 'leapfrog' colonization process.</p
    corecore