2,337 research outputs found

    Quantum Decoherence of Photons in the Presence of Hidden U(1)s

    Get PDF
    Many extensions of the standard model predict the existence of hidden sectors that may contain unbroken abelian gauge groups. We argue that in the presence of quantum decoherence photons may convert into hidden photons on sufficiently long time scales and show that this effect is strongly constrained by CMB and supernova data. In particular, Planck-scale suppressed decoherence scales D ~ E^2/M_Pl (characteristic for non-critical string theories) are incompatible with the presence of even a single hidden U(1). The corresponding bounds on the decoherence scale are four orders of magnitude stronger than analogous bounds derived from solar and reactor neutrino data and complement other bounds derived from atmospheric neutrino data.Comment: 8 pages, 9 figure

    Interplay between the electrical transport properties of GeMn thin films and Ge substrates

    Get PDF
    We present evidence that electrical transport studies of epitaxial p-type GeMn thin films fabricated on high resistivity Ge substrates are severely influenced by parallel conduction through the substrate, related to the large intrinsic conductivity of Ge due to its small bandgap. Anomalous Hall measurements and large magneto resistance effects are completely understood by taking a dominating substrate contribution as well as the measurement geometry into account. It is shown that substrate conduction persists also for well conducting, degenerate, p-type thin films, giving rise to an effective two-layer conduction scheme. Using n-type Ge substrates, parallel conduction through the substrate can be reduced for the p-type epi-layers, as a consequence of the emerging pn-interface junction. GeMn thin films fabricated on these substrates exhibit a negligible magneto resistance effect. Our study underlines the importance of a thorough characterization and understanding of possible substrate contributions for electrical transport studies of GeMn thin films.Comment: 9 pages, 9 figure

    Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal

    Full text link
    We report experimental results for convection near onset in a thin layer of a homeotropically aligned nematic liquid crystal heated from below as a function of the temperature difference ΔT\Delta T and the applied vertical magnetic field HH and compare them with theoretical calculations. The experiments cover the field range 8 \alt h \equiv H/ H_{F} \alt 80 (HF=H_F = is the Fr\'eedericksz field). For hh less than a codimension-two field hct46h_{ct} \simeq 46 the bifurcation is subcritical and oscillatory, with travelling- and standing-wave transients. Beyond hcth_{ct} the bifurcation is stationary and subcritical until a tricritical field ht=57.2h_t= 57.2 is reached, beyond which it is supercritical. The bifurcation sequence as a function of hh found in the experiment confirms the qualitative aspects of the theoretical predictions. However, the value of hcth_{ct} is about 10% higher than the predicted value and the results for kck_c are systematically below the theory by about 2% at small hh and by as much as 7% near hcth_{ct}. At hcth_{ct}, kck_c is continuous within the experimental resolution whereas the theory indicates a 7% discontinuity. The theoretical tricritical field htth=51h_t^{th} = 51 is somewhat below the experimental one. The fully developed flow above RcR_c for h<hcth < h_{ct} is chaotic. For hct<h<hth_{ct} < h < h_t the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh number below RcR_c, i.e. the bifurcation is hysteretic. Above the tricritical field hth_t, we find a bifurcation to a time independent pattern which within our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure

    Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection

    Get PDF
    The origin of the power-law decay measured in the power spectra of low Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed using long time numerical simulations of the three-dimensional Boussinesq equations in cylindrical domains. The power-law is found to arise from quasi-discontinuous changes in the slope of the time series of the heat transport associated with the nucleation of dislocation pairs and roll pinch-off events. For larger frequencies, the power spectra decay exponentially as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures

    As-built design specification for the Patterson-Pitt-Thadani minimum loss classifier

    Get PDF
    There are no author-identified significant results in this report

    As-built design specification for PDP 11/45 accuracy assessment system

    Get PDF
    There are no author-identified significant results in this report

    Preliminary user guide for the program GTDDM (Ground Truth Dot Dump)

    Get PDF
    There are no author-identified significant results in this report

    Towards a Graphene-Based Quantum Impedance Standard

    Full text link
    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10^7. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about -8x10^-8/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency fϵμf\sim\epsilon^\mu with μ1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure
    corecore