11,619 research outputs found

    Tightening Quantum Speed Limits for Almost All States

    Full text link
    Conventional quantum speed limits perform poorly for mixed quantum states: They are generally not tight and often significantly underestimate the fastest possible evolution speed. To remedy this, for unitary driving, we derive two quantum speed limits that outperform the traditional bounds for almost all quantum states. Moreover, our bounds are significantly simpler to compute as well as experimentally more accessible. Our bounds have a clear geometric interpretation; they arise from the evaluation of the angle between generalized Bloch vectors.Comment: Updated and revised version; 5 pages, 2 figures, 1 page appendi

    Enhancing the charging power of quantum batteries

    Full text link
    Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when NN batteries are charged collectively. We first derive analytic upper bounds for the collective \emph{quantum advantage} in charging power for two choices of constraints on the charging Hamiltonian. We then highlight the importance of entanglement by proving that the quantum advantage vanishes when the collective state of the batteries is restricted to be in the separable ball. Finally, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted, i.e., at most kk batteries are interacting. Our result is a fundamental limit on the advantage offered by quantum technologies over their classical counterparts as far as energy deposition is concerned.Comment: In this new updated version Theorem 1 has been changed with Proposition 1. The paper has been published on PRL, and DOI included accordingl

    Production of TeV gamma-radiation in the vicinity of the supermassive black hole in the giant radiogalaxy M87

    Full text link
    Although the giant radiogalaxy M 87 harbors many distinct regions of broad-band nonthermal emission, the recently reported fast variability of TeV gamma rays from M 87 on a timescale of days strongly constrains the range of speculations concerning the possible sites and scenarios of particle acceleration responsible for the observed TeV emission. A natural production site of this radiation is the immediate vicinity of the central supermassive mass black hole (BH). Because of the low bolometric luminosity, the nucleus of M 87 is effectively transparent for gamma rays up to energy of 10 TeV, which makes this source an ideal laboratory for study of particle acceleration processes close to the BH event horizon. We critically analyse different possible radiation mechanisms in this region, and argue that the observed very high-energy gamma ray emission can be explained by the inverse Compton emission of ultrarelativistic electron-positron pairs produced through the development of an electromagnetic cascade in the BH magnetosphere. We demonstrate, through detailed numerical calculations of acceleration and radiation of electrons in the magnetospheric vacuum gap, that this ``pulsar magnetosphere like'' scenario can satisfactorily explain the main properties of TeV gamma-ray emission of M 87.Comment: 11 pages, ApJ, in prin

    VERITAS Observations of Extragalactic Non-Blazars

    Full text link
    During the 2007/2008 season, VERITAS was used for observations at E>200 GeV of several extragalactic non-blazar objects such as galaxy clusters, starburst and interacting galaxies, dwarf galaxies, and nearby galaxies. In these proceedings, we present preliminary results from our observations of dwarf galaxies and M87. Results from observation of other non-blazar sources are presented in separate papers in the proceedings.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    VERITAS Distant Laser Calibration and Atmospheric Monitoring

    Full text link
    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception

    Demonstration of non-Markovian process characterisation and control on a quantum processor

    Get PDF
    In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated -- or non-Markovian -- noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10310^{-3}. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction

    Morphology and hardness ratio exploitation under limited statistics

    Full text link
    Gamma-ray astronomy has produced for several years now sky maps for low photon statistics, non-negligible background and comparatively poor angular resolution. Quantifying the significance of spatial features remains difficult. Besides, spectrum extraction requires regions with large statistics while maps in energy bands allow only qualitative interpretation. The two main competing mechanisms in the VHE domain are the Inverse-Compton emission from accelerated electrons radiating through synchrotron in the X-ray domain and the interactions between accelerated hadrons and the surrounding medium, leading to the production and subsequent decay of Pi0 mesons. The spectrum of the VHE emission from leptons is predicted to steepen with increasing distance from the acceleration zone, owing to synchrotron losses (i.e. cooled population). It would remain approximately constant for hadrons. Ideally, spectro-imaging analysis would have the same spatial scale in the TeV and X-ray domains, to distinguish the local emission mechanisms. More realistically, we investigate here the possibility of improving upon the currently published HESS results by using more sophisticated tools.Comment: 4 pages, 6 figures, Proceeding for a poster at the GAMMA08 Heidelberg Symposiu

    Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature

    Get PDF
    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrodinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics.CONICyTFONDECyT 1110135 1080658Brazilian agency CNPqBrazilian agency FAPESPMarie Curie International Incoming Fellowshiphospitality of Paris ObservatoryInstitute for Fusion Studie

    Diffuse Extragalactic Background Radiation

    Full text link
    Attenuation of high--energy gamma rays by pair--production with UV, optical and IR background photons provides a link between the history of galaxy formation and high--energy astrophysics. We present results from our latest semi-analytic models (SAMs), based upon a Λ\LambdaCDM hierarchical structural formation scenario and employing all ingredients thought to be important to galaxy formation and evolution, as well as reprocessing of starlight by dust to mid- and far-IR wavelengths. Our models also use results from recent hydrodynamic galaxy merger simulations. These latest SAMs are successful in reproducing a large variety of observational constraints such as number counts, luminosity and mass functions, and color bimodality. We have created 2 models that bracket the likely ranges of galaxy emissivities, and for each of these we show how the optical depth from pair--production is affected by redshift and gamma-ray energy. We conclude with a discussion of the implications of our work, and how the burgeoning science of gamma-ray astronomy will continue to help constrain cosmology.Comment: 12 pages, 8 figures, to be published in the Proceedings of the 4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy, held July 2008 in Heidelberg, German
    corecore