10,671 research outputs found
Macroscopic fe-simulation of residual stresses in thermo-mechanically processed steels considering phase transformation effects
Residual stresses are an important issue as they affect both the manufacturing processes as well as the performance of the final parts. Taking into account the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile for cooling of the parts offers a great potential for the targeted adjustment of the desired residual stress state. However, in addition to elastic, plastic and linear thermal strain components, the complex material phenomena arising from phase transformation effects of the polymorphic steels have to be considered in order to predict the residual stresses. These transformation strains account for the plastic deformation at the phase boundary between the emerging and the parent phase. In addition, they are strongly related to the transformation induced plasticity (TRIP) phenomena which depend on the stress state. The aim of this study is the investigation of TRIP effects and their impact on residual stresses regarding the typical hot forming steels 1.7225 (DIN: 42CrMo4) and 1.3505 (DIN: 100Cr6) by means of an experimental-numerical approach. The TRIP behaviour of the materials under consideration is integrated into an FE simulation model in the commercial software Simufact.forming for the purpose of residual stress prediction. The experimental thermo-mechanical investigations are carried out using a quenching and forming dilatometer. These experiments are numerically modelled by means of FEM which allows TRIP coefficients to be determined phasespecifically by numerical identification. For validation of the improved FE-model, an experimental thermo-mechanical reference process is considered, in which cylindrical specimens with an eccentric hole are hot formed and subsequently cooled by different temperature routes. Finally, the numerical model is validated by means of a comparison between residual stress states determined with X-ray diffraction and predicted residual stresses from the simulation
CO line emission from galaxies in the Epoch of Reionization
We study the CO line luminosity (), the shape of the CO Spectral
Line Energy Distribution (SLED), and the value of the CO-to-
conversion factor in galaxies in the Epoch of Reionization (EoR). To this aim,
we construct a model that simultaneously takes into account the radiative
transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO
lines are excited. We then use it to post-process state-of-the-art zoomed, high
resolution (), cosmological simulation of a main-sequence
(, ) galaxy, "Alth{\ae}a", at . We find that the CO emission
traces the inner molecular disk () of Alth{\ae}a with
the peak of the CO surface brightness co-located with that of the [CII] 158 emission. Its is comparable
to that observed in local galaxies with similar stellar mass. The high
() gas surface density in
Alth{\ae}a, its large Mach number (\mach), and the warm kinetic
temperature () of GMCs yield a CO SLED peaked at the
CO(7-6) transition, i.e. at relatively high-, and a CO-to-
conversion factor lower than that of the Milky Way. The ALMA observing time
required to detect (resolve) at 5 the CO(7-6) line from galaxies
similar to Alth{\ae}a is h ( h).Comment: 16 pages, 14 figures, accepted for publication in MNRA
Kinematics of galaxies from [CII] line emission
We study the kinematical properties of galaxies in the Epoch of Reionization
via the [CII] 158m line emission. The line profile provides information on
the kinematics as well as structural properties such as the presence of a disk
and satellites. To understand how these properties are encoded in the line
profile, first we develop analytical models from which we identify disk
inclination and gas turbulent motions as the key parameters affecting the line
profile. To gain further insights, we use "Althaea", a highly-resolved () simulated prototypical Lyman Break Galaxy, in the redshift range , when the galaxy is in a very active assembling phase. Based on
morphology, we select three main dynamical stages: I) Merger , II) Spiral Disk,
and III) Disturbed Disk. We identify spectral signatures of merger events,
spiral arms, and extra-planar flows in I), II), and III), respectively. We
derive a generalised dynamical mass vs. [CII]-line FWHM relation. If precise
information on the galaxy inclination is (not) available, the returned mass
estimate is accurate within a factor (). A Tully-Fisher relation is
found for the observed high- galaxies, i.e. for which we provide a simple, physically-based
interpretation. Finally, we perform mock ALMA simulations to check the
detectability of [CII]. When seen face-on, Althaea is always detected at ; in the edge-on case it remains undetected because the larger
intrinsic FWHM pushes the line peak flux below detection limit. This suggests
that some of the reported non-detections might be due to inclination effects.Comment: 14 pages, 12 figures, accepted for publication in MNRA
Deep into the structure of the first galaxies: SERRA views
We study the formation and evolution of a sample of Lyman Break Galaxies in
the Epoch of Reionization by using high-resolution (),
cosmological zoom-in simulations part of the SERRA suite. In SERRA, we follow
the interstellar medium (ISM) thermo-chemical non-equilibrium evolution, and
perform on-the-fly radiative transfer of the interstellar radiation field
(ISRF). The simulation outputs are post-processed to compute the emission of
far infrared lines ([CII], [NII], and [OIII]). At , the most massive
galaxy, `Freesia', has an age , stellar mass
, and a star formation rate
, due to a recent burst.
Freesia has two stellar components (A and B) separated by ; other 11 galaxies are found within . The
mean ISRF in the Habing band is and is spatially uniform; in
contrast, the ionisation parameter is , and
has a patchy distribution peaked at the location of star-forming sites. The
resulting ionising escape fraction from Freesia is .
While [CII] emission is extended (radius 1.54 kpc), [OIII] is concentrated in
Freesia-A (0.85 kpc), where the ratio . As many high- galaxies, Freesia lies below the local [CII]-SFR
relation. We show that this is the general consequence of a starburst phase
(pushing the galaxy above the Kennicutt-Schmidt relation) which
disrupts/photodissociates the emitting molecular clouds around star-forming
sites. Metallicity has a sub-dominant impact on the amplitude of [CII]-SFR
deviations.Comment: 22 pages, 14 figures, accepted by MNRA
A population-based case-control study on social factors and risk of testicular germ cell tumours
Objectives Incidence rates for testicular cancer have risen over the last few decades. Findings of an association between the risk of testicular cancer and social factors are controversial. The association of testicular cancer and different indicators of social factors were examined in this study.<p></p>
Design Caseâcontrol study.<p></p>
Setting Population-based multicentre study in four German regions (city states Bremen and Hamburg, the Saarland region and the city of Essen).<p></p>
Participants The study included 797 control participants and 266 participants newly diagnosed with testicular cancer of which 167 cases were classified as seminoma and 99 as non-seminoma. The age of study participants ranged from 15 to 69â
years.<p></p>
Methods Social position was classified by educational attainment level, posteducational training, occupational sectors according to Erikson-Goldthorpe-Portocarrero (EGP) and the socioeconomic status (SES) on the basis of the International SocioEconomic Index of occupational status (ISEI). ORs and corresponding 95% CIs (95% CIs) were calculated for the whole study sample and for seminoma and non-seminoma separately.<p></p>
Results Testicular cancer risk was modestly increased among participants with an apprenticeship (OR=1.7 (95% CI 1.0 to 2.8)) or a university degree (OR=1.6 (95% CI 0.9 to 2.8)) relative to those whose education was limited to school. Analysis of occupational sectors revealed an excess risk for farmers and farm-related occupations. No clear trend was observed for the analyses according to the ISEI-scale.<p></p>
Conclusions Social factors based on occupational measures were not a risk factor for testicular cancer in this study. The elevated risk in farmers and farm-related occupations warrants further research including analysis of occupational exposures.<p></p>
Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior
The KamLAND and Borexino experiments have detected electron antineutrinos
produced in the decay chains of natural thorium and uranium (Th and U
geoneutrinos). We analyze the energy spectra of current geoneutrino data in
combination with solar and long-baseline reactor neutrino data, with
marginalized three-neutrino oscillation parameters. We consider the case with
unconstrained Th and U event rates in KamLAND and Borexino, as well as cases
with fewer degrees of freedom, as obtained by successively assuming for both
experiments a common Th/U ratio, a common scaling of Th+U event rates, and a
chondritic Th/U value. In combination, KamLAND and Borexino can reject the null
hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or
indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in
broad agreement with typical Earth model expectations. Conversely, the results
disfavor the hypothesis of a georeactor in the Earth's core, if its power
exceeds a few TW. The interplay of KamLAND and Borexino geoneutrino data is
highlighted.Comment: 12 pages, including 6 figure
A semi-analytical perspective on massive galaxies at
The most massive and luminous galaxies in the Universe serve as powerful
probes to study the formation of structure, the assembly of mass, and
cosmology. However, their detailed formation and evolution is still barely
understood. Here we extract a sample of massive mock galaxies from the
semi-analytical model of galaxy formation (SAM) GALACTICUS from the
MultiDark-Galaxies, by replicating the CMASS photometric selection from the
SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). The comparison of the
GALACTICUS CMASS-mock with BOSS-CMASS data allows us to explore different
aspects of the massive galaxy population at , including the
galaxy-halo connection and the galaxy clustering. We find good agreement
between our modelled galaxies and observations regarding the galaxy-halo
connection, but our CMASS-mock over-estimates the clustering amplitude of the
2-point correlation function, due to a smaller number density compared to BOSS,
a lack of blue objects, and a small intrinsic scatter in stellar mass at fixed
halo mass of dex. To alleviate this problem, we construct an alternative
mock catalogue mimicking the CMASS colour-magnitude distribution by randomly
down-sampling the SAM catalogue. This CMASS-mock reproduces the clustering of
CMASS galaxies within 1 and shows some environmental dependency of star
formation properties that could be connected to the quenching of star formation
and the assembly bias.Comment: 15 pages, 10 figures, 2 tables, submitted to MNRA
Dusty galaxies in the Epoch of Reionization: simulations
The recent discovery of dusty galaxies well into the Epoch of Reionization
(redshift ) poses challenging questions about the properties of the
interstellar medium in these pristine systems. By combining state-of-the-art
hydrodynamic and dust radiative transfer simulations, we address these
questions focusing on the recently discovered dusty galaxy A2744_YD4 (,
Laporte et al. 2017}). We show that we can reproduce the observed spectral
energy distribution (SED) only using different physical values with respect to
the inferred ones by Laporte et al(2017), i.e. a star formation rate of
, a factor higher than
deduced from simple Spectral Energy Distribution fitting. In this case we find:
(a) dust attenuation (corresponding to ) is consistent with a Milky
Way extinction curve; (b) the dust-to-metal ratio is low, , implying that early dust formation is rather inefficient; (c) the
luminosity-weighted dust temperature is high, , as a
result of the intense ( MW) interstellar radiation field;
(d) due to the high , the ALMA Band 7 detection can be explained by a
limited dust mass, M. Finally, the high dust
temperatures might solve the puzzling low infrared excess recently deduced for
high- galaxies from the IRX- relation.Comment: 15 pages, accepted for publication in MNRA
Algal culture studies related to a Closed Ecological Life Support System (CELSS)
In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included
Targeted adjustment of residual stresses in hot-formed components by means of process design based on finite element simulation
The aim of this work is to generate an advantageous compressive residual stress distribution in the surface area of hot-formed components by intelligent process control with tailored cooling. Adapted cooling is achieved by partial or temporal instationary exposure of the specimens to a waterâair spray. In this way, macroscopic effects such as local plastification caused by inhomogeneous strains due to thermal and transformation-induced loads can be controlled in order to finally customise the surface-near residual stress distribution. Applications for hot-formed components often require special microstructural properties, which guarantee a certain hardness or ductility. For this reason, the scientific challenge of this work is to generate different residual stress distributions on components surfaces, while the geometric as well as microstructural properties of AISI 52100 alloy stay the same. The changes in the residual stresses should therefore not result from the mentioned changed component properties, but solely from the targeted process control. Within the scope of preliminary experimental studies, tensile residual stresses in a martensitic microstructure were determined on reference components, which had undergone a simple cooling in water (from the forming heat), or low compressive stresses in pearlitic microstructures were determined after simple cooling in atmospheric air. Numerical studies are used to design two tailored cooling strategies capable of generating compressive stresses in the same components. The developed processes with tailored cooling are experimentally realised, and their properties are compared to those of components manufactured involving simple cooling. Based on the numerical and experimental analyses, this work demonstrates that it is possible to influence and even invert the sign of the residual stresses within a component by controlling the macroscopic effects mentioned above
- âŠ