259 research outputs found
Sustainable Phosphorus Loadings from Effective and Cost-Effective Phosphorus Management Around the Baltic Sea
Nutrient over-enrichment of the Baltic Sea, accompanied by intensified algal blooms and decreasing water clarity, has aroused widespread concern in the surrounding countries during the last four decades. This work has used a well-tested dynamic mass-balance model to investigate which decrease in total phosphorus loading would be required to meet the environmental goal to restore the trophic state in the Baltic Sea to pre-1960s levels. Furthermore, the extent to which various abatement options may decrease the phosphorus loading in a cost-effective manner has been studied. Upgrading urban sewage treatment in the catchment could, alone or in combination with banning phosphates in detergents, be sufficient to meet the set environmental goal, at an estimated annual basin-wide cost of 0.21–0.43 billion euro. Such a plan would potentially decrease the total phosphorus loading to the Baltic Sea with 6,650–10,200 tonnes per year
What an Agile Leader Does: The Group Dynamics Perspective
When large industrial organizations change to (or start with) an agile approach to operations, managers and some employees are supposed to be “agile leaders” often without being given a clear definition of what that comprises when building agile teams. An inductive thematic analysis was used to investigate what 15 appointed leaders actually do and perceive as challenges regarding group dynamics working with an agile approach. Team maturity, Team design, and Culture and mindset were all categories of challenges related to group dynamics that the practitioners face and manage in their work-life that are not explicitly mentioned in the more process-focused agile transformation frameworks. The results suggest that leader mitigation of these three aspects of group dynamics is essential to the success of an agile transformation
Direct stimulation of bone mass by increased GH signalling in osteoblasts of Socs2-/- mice
The suppressor of cytokine signalling (Socs2−/−)-knockout mouse is characterised by an overgrowth phenotype due to enhanced GH signalling. The objective of this study was to define the Socs2−/− bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2−/− mice following GH treatment was associated with increased cortical bone area (Ct.Ar) (P<0.01). Furthermore, detailed bone analysis of male and female juvenile and adult Socs2−/− mice revealed an altered cortical and trabecular phenotype consistent with the known anabolic effects of GH. Indeed, male Socs2−/− mice had increased Ct.Ar (P<0.05) and thickness associated with increased strength. Despite this, there was no elevation in hepatic Igf1 expression, suggesting that the anabolic bone phenotype was the result of increased local GH action. Mechanistic studies showed that in osteoblasts and bone of Socs2−/− mice, STAT5 phosphorylation was significantly increased in response to GH. Conversely, overexpression of SOCS2 decreased GH-induced STAT5 signalling. Although an increase in Igf1 expression was observed in Socs2−/− osteoblasts following GH, it was not evident in vivo. Igf1 expression levels were not elevated in response to GH in 4-week-old mice and no alterations in expression was observed in bone samples of 6-week-old Socs2−/− mice. These studies emphasise the critical role of SOCS2 in controlling the local GH anabolic bone effects. We provide compelling evidence implicating SOCS2 in the regulation of GH osteoblast signalling and ultimately bone accrual, which maybe via mechanisms that are independent of IGF1 production in vivo
Economic Impacts of Non-Native Forest Insects in the Continental United States
Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly 830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors
- …