3 research outputs found

    Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs

    Get PDF
    The hypothesis, that cortical dynamics operates near criticality also suggests, that it exhibits universal critical exponents which marks the Kuramoto equation, a fundamental model for synchronization, as a prime candidate for an underlying universal model. Here, we determined the synchronization behavior of this model by solving it numerically on a large, weighted human connectome network, containing 804092 nodes, in an assumed homeostatic state. Since this graph has a topological dimension d<4d < 4, a real synchronization phase transition is not possible in the thermodynamic limit, still we could locate a transition between partially synchronized and desynchronized states. At this crossover point we observe power-law--tailed synchronization durations, with τt≃1.2(1)\tau_t \simeq 1.2(1), away from experimental values for the brain. For comparison, on a large two-dimensional lattice, having additional random, long-range links, we obtain a mean-field value: τt≃1.6(1)\tau_t \simeq 1.6(1). However, below the transition of the connectome we found global coupling control-parameter dependent exponents 1<τt≀21 < \tau_t \le 2, overlapping with the range of human brain experiments. We also studied the effects of random flipping of a small portion of link weights, mimicking a network with inhibitory interactions, and found similar results. The control-parameter dependent exponent suggests extended dynamical criticality below the transition point.Comment: 12 pages, 9 figures + Supplemenraty material pdf 2 pages 4 figs, 1 table, accepted version in Scientific Report

    Structural basis of envelope and phase intrinsic coupling modes in the cerebral cortex

    Get PDF
    Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.This work was supported by funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - SFB 936 - 178316478 - A1 (C.C.H.), A2 (A.K.E.), and Z3 (C.C.H. and A.M.), SPP1665 - 220176618 - EN533/13-1 (A.K.E.), SPP2041 - 313856816 - HI1286/6-1 (C.C.H.) and EN533/15-1 (A.K.E.), from the European Unions Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreements 785907 and 945539 (Human Brain Project SGA2 and SGA3, C.C.H.), and from the 2015 FLAG-ERA Joint Transnational Call for project FIIND - ANR-15-HBPR-0005 (R.T.).Peer reviewe
    corecore