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a b s t r a c t 

Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. 

Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain 

partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function 

relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chroni- 

cally implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI 

tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. 

Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume 

conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs 

when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increas- 

ing frequency which is accompanied by reduced delays. Computational models produced results that were highly 

dependent on the specific parameter settings. The most consistent predictions were derived from measures solely 

based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both 

phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity 

in the cerebral cortex. 
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. Introduction 

Intrinsic coupling modes reflect the patterns of synchronization or

unctional connectivity (FC) between neuronal ensembles during spon-

aneous brain activity ( Engel et al., 2013 ). These coupling modes rep-

esent a widely used concept in modern neuroscience for probing the

onnectional organization of intact or damaged brains. ICMs have been
Abbreviations: ICMs, Intrinsic coupling modes; FC, Functional connectivity; SC, Stru

hase ICMs. 
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ssociated with individual brain characteristics such as behavior and

ognitive abilities ( Fox and Raichle, 2007; Fries, 2005; Hipp et al., 2011;

mith et al., 2015 ), and aberrant ICM patterns have been linked to a

ariety of brain diseases ( Fornito and Bullmore, 2015; Schnitzler and

ross, 2005; Uhlhaas and Singer, 2012 ). Numerous studies in animals

nd humans have suggested that ICMs occur across a broad range of

patial and temporal scales, involving two distinct families of dynam-
ctural connectivity; ECoG, Electrocorticography; eICMs, Envelope ICMs; pICMs, 
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cal coupling modes, namely phase ICMs (pICMs) and envelope ICMs

eICMs) ( Engel et al., 2013 ). Phase ICMs represent ongoing oscillations

f band-limited dynamics, typically occurring at frequencies between

bout 1 to 150 Hz, which can be quantified by measures of phase con-

istency. By contrast, envelope ICMs correspond to coupled aperiodic

uctuations, typically on slower time scales, which can be uncovered

y the correlation of signal power envelopes. However, the principles

hat shape both types of ICMs remain partly unresolved, notably their

elation to the underlying brain structure ( Honey et al., 2010; Park and

riston, 2013 ). Therefore, a careful investigation of the relation of ICMs

o structural connectivity is required in order to advance our under-

tanding of the network basis of cognition and behavior ( Deco et al.,

011; Hipp et al., 2012; Park and Friston, 2013; Siegel et al., 2012;

inger, 2013; Sporns, 2014 ). 

The physical basis for the emergence of functional connectivity pat-

erns is the underlying brain anatomy, specifically, structural connec-

ivity among brain regions ( Foster et al., 2016 ). In this context, dif-

usion MRI has transformed the field by its ability to estimate the

hole brain architecture of structural connections in a non-invasive

ay ( Le Bihan and Heidi, 2011 ). In parallel, resting-state fMRI has be-

ome a popular approach for probing the functional organization of the

rain at slow time scales, representing eICMs ( van den Heuvel and Pol,

010; Raichle, 2010 ). Pioneering studies have demonstrated a tight in-

ricate association between SC patterns and resting-state fMRI-based

C ( Greicius et al., 2009; Hagmann et al., 2008; Koch et al., 2002;

incent et al., 2007 ). Much less well understood are interactions at

aster time scales, that is, pICMs, and their relations to the underlying

natomy. Nonetheless, a few studies have reported a positive association

etween pICMs and SC, using electrophysiological measurements ( Chu

t al., 2015; Meier et al., 2016 ). However, a comprehensive description

f the structure-function relationships including both types of ICMs and

cross frequency ranges is lacking. 

Despite significant progress made in the analysis of functional

euroimaging data, such measurements suffer from diverse limita-

ions. While fMRI has a good spatial resolution, its temporal reso-

ution is rather limited, while the opposite is true for electrophysi-

logical data. Furthermore, electrophysiological recordings are prone

o reveal artefactual functional connectivity caused by the mixing

f cortical signals at the sensor level due to volume conduction ef-

ects ( Haufe et al., 2013 ). Because volume conduction is instantaneous

zero-lag), a number of measures quantifying only lagged couplings

r strategies that explicitly remove zero-lag couplings have been de-

igned to tackle this issue (‘lagged ICMs’) ( Palva and Palva, 2012 ).

owever, such measures have rarely been employed in the inves-

igation of structure-function relationships (but see Finger et al.,

016 ). 

Large-scale computational models have offered new mathematical

ools to explicitly link SC to ICMs and to highlight generative mod-

ls of functional coupling ( Breakspear, 2017; Deco et al., 2009; 2008 ).

ost computational models presented in recent years have focused on

escribing functional interactions at slow time scales (eICMs) using

esting-state fMRI ( Cabral et al., 2014a ). A variety of models have been

eveloped for this purpose that specifically consider the influence of a

ariety of parameters such as structural weights, delays and noise on

eural dynamics ( Cabral et al., 2014a; Deco et al., 2011; 2009 ). Re-

arkably, substantially different computational models result in similar

C predictions ( Messé et al., 2014; 2015b ), in such a way that simple

tatistical models based on the topological characteristics of SC can be

sed with similar levels of prediction performance ( Goñi et al., 2014;

essé et al., 2015a ). Few studies have extended this framework by us-

ng electrophysiological measurements ( Abeysuriya et al., 2018; Cabral

t al., 2014b; Tewarie et al., 2019 ). Recent investigations suggest that

euronal synchronization at faster time scales (pICMs) can also be pre-

icted by computational simulations ( Abeysuriya et al., 2018; Finger

t al., 2016 ). Yet, the relative ability of computational models to predict

oth types of ICMs remains elusive, especially when using lagged ICM
2 
easures. Overall, the mechanisms underlying the two types of ICMs

re only partly resolved. 

Against this background, we used data of ongoing activity of multiple

ortical areas recorded from awake ferrets with chronically implanted

icro-ECoG arrays ( Stitt et al., 2017 ). Such a setting provides record-

ngs with high temporal and spatial resolution for a substantial number

f cortical areas. Moreover, due to the low gyrification of the ferret brain

nd the close proximity of the electrodes to the brain, volume conduc-

ion is strongly reduced, compared to non-invasive approaches such as

EG/EEG ( Dubey and Ray, 2019; Einevoll et al., 2013; Liu et al., 2015 ).

dditionally, we obtained structural connectivity estimates from diffu-

ion MRI tractography data for the regions underlying the micro-ECoG

rray ( Delettre et al., 2019 ). We found that both types of ICMs partially

eflect the underlying SC, that the correlation with SC increases with in-

reasing carrier frequency, and that pICMs and eICMs show resemblance

n their topographies, pointing to a mechanistic anchoring of the ICMs

n the underlying SC. However, the use of lagged ICMs virtually abol-

shes the association of pICMs with SC except for high frequency, while

he association of eICMs with SC remains unchanged. The strengthening

f the structure-function association with frequency is accompanied by

 decrease in time delays. Also, we found that computational models,

ndependently of their complexity, can reproduce ICM patterns reason-

bly well, but not much beyond SC alone. Thus, the results demonstrate

hat patterns of cortical functional coupling, as reflected in both phase

nd envelope ICMs, are both characteristically constrained, albeit to dif-

erent degrees, by the underlying structural connectivity in the cerebral

ortex. 

. Material and methods 

.1. ECoG data 

Intrinsic coupling modes were extracted from micro-ECoG record-

ngs of ongoing brain activity in awake ferrets ( Mustela putorius furo ).

ata were collected in five adult female ferrets ( Stitt et al., 2017 ). All

xperiments were approved by the Hamburg state authority for animal

elfare and were performed in accordance with the guidelines of the

erman Animal Protection Law. 

To obtain the recordings from an extended set of cortical ar-

as in freely moving animals, a micro-ECoG array had been im-

lanted that was co-developed with the University of Freiburg (IMTEK,

reiburg) ( Rubehn et al., 2009 ). The array covered a large portion of

he posterior, parietal, and temporal surface of the left ferret brain

emisphere. Sixty-four platinum electrodes ( ∅ 250 μm) were arranged

quidistantly (1.5 mm) in a hexagonal manner. See Fig. 1 for a schematic

iagram of the micro-ECoG layout. Ferrets had been accustomed to a

ecording box (45 ×20 ×52 cm), where they could move around freely

hile neural activity was recorded. For each animal, at least 4 separate

ecording sessions with a duration of at least 2 h had been obtained.

icro-ECoG signals had been recorded using a 64 channel AlphaLab

nRTM recording system (Alpha Omega Engineering, Israel), filtered

0.1–357 Hz bandpass), and digitized (1.4 kHz sampling rate). A total

f 23 recording sessions were obtained and analysed. 

To reduce noise and also attenuate volume conduction effects, a lo-

al Laplacian montage was used ( Tenke and Kayser, 2012 ) also called

urrent source density ( Pesaran et al., 2018 ). For each electrode, the av-

rage signal within its neighborhood (maximal distance of 2 mm) was

ubtracted ( Hjorth, 1975 ). Noise epochs were detected using a threshold

f 10 standard deviations. Data were rejected in a window of ± 10 s from

ll time points that exceeded this threshold. Then, notch filters were ap-

lied to remove line noise and its harmonics (50, 100, and 150 Hz),

nd the data were downsampled to 500 Hz. All data were visually in-

pected before further analysis to exclude electrical artefacts. In a previ-

us study, brain activity was objectively classified into slow-wave sleep,

apid-eye-movement sleep and awake periods, using a data-driven ap-

roach ( Stitt et al., 2017 ). The present study focused only on data from
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Fig. 1. Multimodal processing pipeline. (A) Ferret posterior cerebral cortex parcellated into 13 functionally and anatomically distinct regions according 

to Bizley and King (2009) . Abbreviations: S2, S3: somatosensory cortex 2 and 3; PPr/c: rostral/caudal posterior parietal cortex; 17, 18, 19, 20, 21: occipital vi- 

sual cortex areas; SSY: suprasylvian field; A1, A2: primary and secondary auditory cortex; AAF: anterior auditory field. (B) Empirical micro-ECoG recording and 

analysis. (From left to right) Micro-ECoG-array over the left posterior ferret brain cortex. Awake periods were extracted from the resulting brain activity, elec- 

trodes were re-referenced and mapped onto the ferret brain atlas, then time-frequency representations were computed using wavelet transforms for each area and 

cross-correlation were computed across frequencies for each pair of areas. Subsequently, phase and envelope ICMs and their delays were computed over multiple 

frequencies and between all pairs of areas, and averaged within frequency bands. (C) Patterns of structural connectivity extracted from diffusion MRI tractography 

and the associated fibers length. (D) Large-scale computational brain models and an illustrative example of simulated ICMs and their delays. 

a  

a  

p

 

m  

m  

o  

j  

E  

m  

e  

t  

a  

t  

w

 

y  

t  

w  

r  

c  

m  

m  

d  

t  

o  
wake periods with, on average, 34 periods of 78 s per session across

nimals (periods shorter than 10 s were discarded to increase statistical

ower). 

To account for inter-individual differences in the position of the

icro-ECoG array and thus make cross-animal comparisons possible,

icro-ECoG electrodes were monted at the area-level using the atlas

f Bizley and King (2009) . The position of micro-ECoG grids were pro-

ected onto a scaled illustration of the atlas of Bizley and King (2009) .

ach electrode was assigned to a cortical area by a ‘winner-takes-all’

ethod using its maximum overlap, and subsequently the signals of the

lectrodes belonging to a given area were averaged. In parallel, the dis-

ance between electrodes were also averaged within and between areas

nd subsequently averaged across animals. This physical distance ma-
3 
rix was used as a control in the subsequent analysis. In total, 13 areas

ere covered by the micro-ECoG array for all animals ( Fig. 1 ). 

In order to have a condensed representation of the connectivity anal-

ses, we defined frequency bands of interest. Given the variability of

he frequency peaks classically encountered in the literature together

ith a lack of consensus in the definition of the frequency bands, we

esorted to a data-driven approach based on the power spectrum. We

alculated the power spectral densities, for each awake period, using

utlitaper based on the Slepian sequences (DPSS) on windowed seg-

ents of 10 s with 50% overlap. Then, the FOOOF method was used to

etect the oscillatory peaks over the 1/f component of the power spec-

ra ( Donoghue et al., 2020 ). This allowed us to compute the distribution

f those peaks over all awake periods of all animals. Consequently, we
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b  
efined 4 frequency bands, which encompass the dominant oscillatory

odes: 3–6 Hz ( 𝜃); 9–20 Hz ( 𝛽1 ); 20–35 Hz ( 𝛽2 ); and 55–145 Hz ( 𝛾), see

ig. S1 . 

For each animal and each awake period, a time-frequency estimate

 𝑖 ( 𝑡, 𝑓 ) of signal 𝑥 𝑖 ( 𝑡 ) at area 𝑖 was computed by convolution with a

eries of Morlet’s wavelets. Carrier frequencies were spaced logarithmi-

ally from 0.5 to 200 Hz. The width of the wavelets was set to 7 cycles.

pectral estimates were computed at a rate of 5 Hz. Then, phase and

nvelope ICMs were computed between all pairs of areas using the mea-

ures of phase locking and power correlation, respectively, see Intrinsic

oupling modes section. Time delays were computed using windowed

ross-correlation, see Time delays section. Subsequently, ICM matrices

ere averaged within the frequency bands. Finally, ICM matrices were

veraged across awake periods within each session per animal (session-

evel), then across sessions within each animal (animal-level), and also

cross animals (group-level). Results on the animal- and group-levels

re presented in the main text, while results on the session-level are

eported in supplementary figures. 

All data analysis was performed using custom scripts for Matlab

Mathworks Inc) and the Fieldtrip software ( Oostenveld et al., 2011 ). 

.2. Intrinsic coupling modes 

Phase and envelope ICMs were estimated using the measures of

hase locking and power envelope correlation, respectively. Phase lock-

ng value is a measure of the linear relationship between the phase of os-

illatory signals over time ( Lachaux et al., 1999 ), also called mean phase

oherence ( Mormann et al., 2000 ), where a high value corresponds to

ignals with aligned phases. The phase locking value between signals at

ocation 𝑖 and 𝑗 and for frequency 𝑓 , is given by 

 𝐿𝑉 𝑖𝑗 ( 𝑓 ) = 

1 
𝑇 

||||||
𝑇 ∑
𝑡 =1 

𝑒 − 𝑖 
[
𝜙𝑖 ( 𝑡,𝑓 )− 𝜙𝑗 ( 𝑡,𝑓 ) 

]||||||, (1)

here 𝑇 is the data length, and 𝜙𝑖 ( 𝑡, 𝑓 ) = 𝑎𝑟𝑔( 𝑋 𝑖 ( 𝑡, 𝑓 )) the phase of signal

 at time 𝑡 and frequency 𝑓 . 

Power correlation is a measure of the similarity between the power

nvelopes of the recorded signals ( Brookes et al., 2011; Hipp et al., 2012;

e Pasquale et al., 2012 ). Power envelope is given by the squared abso-

ute values of the complex spectral estimates. Furthermore, a logarith-

ic transform was applied to render the statistics more normal. Then,

he Pearson correlation between the resulting power envelopes from two

ifferent locations 𝑖 and 𝑗 was computed 

 𝐸𝐶 𝑖𝑗 ( 𝑓 ) = 𝑐𝑜𝑟𝑟 ( log ( |𝑋 𝑖 ( 𝑡, 𝑓 ) |2 ) , log ( |𝑋 𝑗 ( 𝑡, 𝑓 ) |2 )) . (2)

Alternatively, we also explored measures robust to volume conduc-

ion effects. To this end, phase and envelope ICMs were estimated

sing the imaginary phase locking and orthogonal power envelope

orrelation, respectively. Following the logic of the imaginary coher-

nce ( Nolte et al., 2004 ), imaginary phase locking represents the imag-

nary part of the average phase difference, which effectively eliminates

he contribution of volume-conducted signals by exclusively considering

hase-lagged signal components 

𝑃 𝐿𝑉 𝑖𝑗 ( 𝑓 ) = 

1 
𝑇 
ℑ 

{ 

𝑇 ∑
𝑡 =1 

𝑒 − 𝑖 
[
𝜙𝑖 ( 𝑡,𝑓 )− 𝜙𝑗 ( 𝑡,𝑓 ) 

]} 

. (3)

Orthogonal power envelope correlation, similar to imaginary phase

ocking, removes instantaneous covariations by orthogonalizing signals

efore computing their power envelopes ( Brookes et al., 2012; Hipp

t al., 2012 ). The time-frequency estimate 𝑋 𝑖 ( 𝑡, 𝑓 ) orthogonalized with

espect to signal 𝑋 𝑗 ( 𝑡, 𝑓 ) is given by 

 𝑖 ⟂𝑗 ( 𝑡, 𝑓 ) = ℑ 

( 

𝑋 𝑖 ( 𝑡, 𝑓 ) 
𝑋 

∗ 
𝑗 
( 𝑡, 𝑓 ) |𝑋 𝑗 ( 𝑡, 𝑓 ) |

) 

. (4)

The orthogonalization being not symmetric, 𝑋 𝑖 ⟂𝑗 ( 𝑡, 𝑓 ) ≠ 𝑋 𝑗⟂𝑖 ( 𝑡, 𝑓 ) ,
ower envelope correlation was computed in both directions and sub-

equently averaged. 
4 
.3. Time delays 

Similar preprocessing steps as for the ICM measures were applied to

ompute time delays except that the data were downsampled to 1000 Hz

to obtain finer time resolution). For each animal and each awake pe-

iod, areas’ time series were filtered at each carrier frequency used for

he wavelet decomposition, i.e., 0.5 to 200 Hz. A narrow bandpass FIR

lter was used centered at each carrier frequency and of width a fifth of

he carrier frequency. Additionally, signals were mirror-padded prior to

ltering to reduce ringing artefacts. Time delays related to pICM were

xtracted directly from the filtered signals, while the logarithm of the

ower envelope using Hilbert transform was used to extract time de-

ays of envelope ICMs. Time delays were computed robustly by means

f cross-correlation combined with a sliding window approach. A win-

ow of 5 s with 25% overlap was used to extract segments. For each

egment, the normalized cross-correlation between each pair of areas

s calculated. Subsequently, these cross-correlation function estimates

ere averaged across all sliding window segments within each session,

nd the estimated delay is given by the lag for which the averaged nor-

alized cross-correlation has the largest absolute value. Maximum al-

owed lag was set to 500 ms. Time delay matrices were subsequently

veraged within the canonical frequency bands, and across sessions and

nimals, as for the ICMs. 

.4. Structural connectivity 

Ferret brain structural connectivity data were based on diffusion

RI tractography covering the 13 areas available from the micro-ECoG

ecordings ( Delettre et al., 2019 ). High resolution MRI were acquired ex

ivo from a 2 month old ferret using a small animal 7 Tesla Bruker MRI

canner (Neurospin, Saclay, France). The ferret was euthanized by an

verdose of pentobarbital and perfused transcardially with 0.9% saline

olution and post-fixed with phosphate-buffered 4% paraformaldehyde

PFA). After extraction, the brain was stored at 4 ◦C in a 4% PFA so-

ution until the MRI acquisition. All procedures were approved by the

nstitutional Animal Care and Use Committee of the Universidad Miguel

ernández and the Consejo Superior de Investigaciones Científicas, Al-

cante, Spain. 

High resolution T2-weighted MRI data was acquired using a multi-

lice multiecho sequence with 18 echo times and 0.12 mm isotropic vox-

ls. Diffusion MRI data were acquired using a multislice 2-D spin-echo

egmented EPI sequence (4 segments) with the following parameters:

R = 40 s; TE = 32 ms; matrix size = 160 ×120 ×80; 0.24 mm isotropic

oxels; 200 diffusion-weighted directions with b = 4000 𝑠 ∕ 𝑚𝑚 

2 ; and 10

0 at the beginning of the sequence, diffusion gradient duration = 5 ms

nd diffusion gradient separation = 17 ms. The total acquisition time of

he diffusion MRI sequences was about 37 hr. 

Diffusion MRI were first visually inspected to exclude volume with

rtefacts. Then, the following preprocessing steps were carried out: lo-

al principal component analysis denoising ( Veraart et al., 2016 ), Gibbs

inging correction ( Kellner et al., 2016 ), FSL-based eddy current cor-

ection ( Andersson and Sotiropoulos, 2016; Jenkinson et al., 2012 )

nd B1 field inhomogeneity correction ( Tustison et al., 2010 ). A brain

ask was manually segmented from the high-resolution T2 volume.

patial normalization using a linear transformation between the high-

esolution T2 volume and diffusion MRI data was computed using FLIRT

ools ( Jenkinson et al., 2002 ), and the brain mask was registered to the

iffusion space. Tractography was performed based on the fiber orien-

ation distribution estimated with a multishell multitissue constrained

pherical deconvolution (msmt CSD) ( Christiaens et al., 2015 ). Spheri-

al harmonic order was set to 8. The response functions were computed

sing the ‘dhollander’ algorithm which provides an unsupervised esti-

ation of tissue-specific response functions. The msmt CSD was per-

ormed using a WM/CSF compartment model ( Jeurissen et al., 2014 ).

he streamline tractographies were then produced following a proba-

ilistic algorithm (iFOD2) ( Tournier et al., 2012 ). One million stream-
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ines were tracked over the full brain with the parameters recommended

y MRtrix3: stepsize 0.12 mm, angle 45 ◦ per voxel, minimal streamline

ength 1.2 mm, maximal length 2.4 cm. Streamline seeds were produced

t random locations within the brain mask until the defined number of

treamlines was reached. To prevent streamlines from going across sulci,

he brain mask was used as a stopping criterion. 

A structural connectivity matrix was extracted from the tractography

utput using the number of streamlines connecting pairs of regions of

 parcellation based on the atlas of the posterior cortex by Bizley and

ing (2009) . The parcellation scheme was manually drawn on the left

emisphere in the diffusion MRI space using the online tool BrainBox

 http://brainbox.pasteur.fr/ ). The structural connectivity matrix was in-

erently symmetric as diffusion MRI tractography does not provide any

nformation about directionality. A matrix reporting the averaged fiber

engths between regions was also computed. The structural connectiv-

ty network is represented by the weighted matrix 𝐴 , where the entries

 𝑖𝑗 are the weights of the connections, i.e., the number of streamlines,

etween pairs of areas 𝑖 and 𝑗. 

All data analysis was performed using custom scripts for

ython ( http://www.python.org/ ) and the MRtrix3 software

 http://www.mrtrix.org/ ). 

.5. Computational models 

We employed computational models of various complexity: the spik-

ng attractor network model, a biologically realistic model of a large

etwork of spiking neurons ( Deco and Jirsa, 2012 ), the Wilson-Cowan

odel, a popular neural-mass model of coupled excitatory and in-

ibitory populations ( Wilson and Cowan, 1972 ), and the spatial autore-

ressive model, a statistical model capturing the stationary behavior of

 diffuse process on networks ( Messé et al., 2015a ). All models incorpo-

ated a parameter that represents the coupling strength between regions.

his parameter was optimized separately for each model, see Statistics

ection. The structural connectivity matrix was normalized before sim-

lations such that the matrix’s rows sum to one ( Cabral et al., 2011;

essé et al., 2014; Tononi et al., 1994 ). 

.5.1. Spiking attractor network model 

The SAN model is a detailed computational model based on spiking

eurons and realistic synapses. A description for the microscopic level,

hat is within areas, is achieved by using a biologically realistic model

f interconnected populations of excitatory and inhibitory neurons. The

ostsynaptic activity is dependent on the incoming synaptic input cur-

ents from other neurons through AMPA, NMDA and GABA receptors, as

ell as from external background input modeled by Poisson spike trains.

xcitatory populations are interconnected at large-scale (inter-areal) via

he structural connectivity scaled by a global coupling strength factor.

or a detailed description of the model refer to Deco and Jirsa (2012) ,

ll parameter values (except the coupling strength) were retained from

he original study. 

We explored coupling parameter values from 0.1 to 10 by steps of

.1. For each coupling strength value, the SAN model was simulated

t a sampling frequency of 10 kHz for 5 min. The resulting data were

hen downsampled to 1 kHz. Simulated ICMs from the neuronal activity

ere extracted in a similar way as for the empirical data from a time-

requency decomposition of the simulated signals. 

.5.2. Wilson-Cowan model 

The WC model represents a network of neural masses describing the

ctivity of an ensemble of excitatory ( 𝐸) and inhibitory ( 𝐼) neuronal

opulations ( Deco et al., 2009; Wilson and Cowan, 1972 ). The dynamics

s governed by the following equations: 
5 
𝐸 

𝜕𝐸 𝑖 ( 𝑡 ) 
𝜕𝑡 

= − 𝐸 𝑖 ( 𝑡 ) + 𝜙

( 

𝑤 ee 𝐸 𝑖 ( 𝑡 ) + 𝑤 ie 𝐼 𝑖 ( 𝑡 ) + 𝑘 
∑
𝑗 

𝑎 ij 𝐸 𝑗 

(
𝑡 − 𝜏ij 

)
+ 𝐼 𝑏 + 𝜎𝜈Ei 

)

𝜏𝐼 
𝜕𝐼 𝑖 ( 𝑡 ) 
𝜕𝑡 

= − 𝐼 𝑖 ( 𝑡 ) + 𝜙
(
𝑤 ei 𝐸 𝑖 ( 𝑡 ) + 𝑤 ii 𝐼 𝑖 ( 𝑡 ) + 𝜎𝜈Ii 

)
, 

here 𝐸 𝑖 (resp. 𝐼 𝑖 ) represents the average firing rate of the excitatory

resp. inhibitory) population 𝑖 , and 𝜏𝐸 (resp. 𝜏𝐼 ) the excitatory (resp. in-

ibitory) time constant. 𝑤 𝑎𝑏 is the local connectivity strength between

opulations 𝑎 and 𝑏 , and 𝑘 represents the global coupling strength.

 = 

{
𝑎 𝑖𝑗 

}
represents the structural connectivity matrix. 𝐼 𝑏 is a constant

pontaneous background input. 𝜏𝑖𝑗 is the propagation delay between re-

ions 𝑖 and 𝑗, based on the average fiber tract length between regions

caled by the axonal velocity, 𝑣 , i.e., 𝜏𝑖𝑗 = 𝐿 𝑖𝑗 ∕ 𝑣 . 𝜈 is a random fluctuat-

ng input accounting for sources of biophysical variability, scaled by 𝜎.

he transfer function 𝜙 accounts for the saturation of firing rates in neu-

onal populations and is modeled by a sigmoid: 𝜙( 𝑥 ) = [1 + 𝑒 −( 𝑥 − 𝑎 )∕ 𝑏 ] −1 .
ll parameter values (except the coupling strength and the delay) were

et as in Abeysuriya et al. (2018) . 

We explored coupling strength values from 0.025 to 1 by steps of

.025, and mean delay values from 0 to 50 ms by steps of 2 ms. For

ach pair of parameter values, the WC model was simulated at a sam-

ling frequency of 10 kHz for 5 min. The resulting data were then down-

ampled to 1 kHz. As excitatory pyramidal cells contribute most strongly

o EEG/MEG/ECoG signals, we associate activity in the excitatory pop-

lations of the model with signals in experimental data ( Buzsáki et al.,

012 ). Simulated ICMs from the neuronal activity were then extracted

n a similar way as for the empirical data from a time-frequency decom-

osition of the simulated signals. 

.5.3. Spatial autoregressive model 

The SAR model assumes that fluctuating neuronal signals, 𝐱 = 

{
𝑥 𝑖 
}
,

re related through a model of structural equations, which relies on

xpressing each signal as a linear function of the others and weighted

y a global coupling factor 𝑘 , leading to 

 = 𝑘𝐴 𝐱 + 𝐞 . (5)

𝐴 represents the structural connectivity matrix, 𝐞 is some additive

oise that stands for the part of the signal that cannot be accounted for

y SC. It is usually assumed to be normally distributed with zero mean

nd unknown covariance Σ, with spatial and temporal independence.

e here further assumed that the variance of 𝐞 is uniform across areas,

educing its covariance to a single constant value, Σ = 𝜎2 . Accordingly,

is multivariate normal with covariance 

 𝐼 − 𝑘𝐴 ) −1 𝜎2 ( 𝐼 − 𝑘𝐴 

′) −1 , (6)

here 𝐼 stands for the identity matrix, and ′ is the regular matrix

ransposition. This model is also known as the simultaneous autoregres-

ive model ( Messé et al., 2015a ), which has been extensively used for

he analysis of spatial data from diverse disciplines such as demogra-

hy, economy and geography ( de Oliveira and Song, 2008; Lesage and

livier, 2007 ). 

We explored coupling parameter values from 0.001 to 0.999 by steps

f 0.02. The SAR model provides a closed form for the covariance matrix

hat can be used to directly compute the predicted ICMs via its normal-

zation. Of note, the SAR model does not provide frequency-resolved

CMs, we assume a common pattern across frequency bands. 

.5.4. Model optimization 

To evaluate the predictive power of the different models, we com-

uted the Spearman correlation as well as distance between simulated

nd empirical ICM matrices. The distance ( 𝐷) between two matrices 𝐴

nd 𝐵 is defined as the root-mean-square deviation, also known as the

robenius norm, 

( 𝐴, 𝐵) = 

√ ∑
𝑖>𝑗 

( 𝑎 𝑖𝑗 − 𝑏 𝑖𝑗 ) 2 . (7)

http://brainbox.pasteur.fr/
http://www.python.org/
http://www.mrtrix.org/
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Optimal model parameters should maximize the similarity between

imulated and empirical ICMs. This similarity was assessed using a sim-

le objective function, representing the distance between simulations

nd empirical data: 

𝑏𝑗 ( 𝐼𝐶𝑀 , 𝐹 , Ω) = 𝐷( 𝐼𝐶𝑀 𝑠𝑖𝑚 (Ω) , 𝐼𝐶𝑀 𝑒𝑚𝑝 ) 
[
1 − 𝑐𝑜𝑟𝑟 ( 𝐼𝐶𝑀 𝑠𝑖𝑚 (Ω) , 𝐼𝐶𝑀 𝑒𝑚𝑝 ) 

]
(8) 

here 𝐹 denoted the frequency band of interest, Ω the set of model’s

arameters, 𝐼𝐶𝑀 𝑠𝑖𝑚 (Ω) the simulated ICM (either phase or envelope)

ccording to the model’s parameters Ω, and 𝐼𝐶𝑀 𝑒𝑚𝑝 the corresponding

mpirical ICM measure. Optimal model parameters are those minimiz-

ng the sum of the objective functions averaged across all frequency

ands: 

rg min 
Ω

∑
𝐹 

𝑂𝑏𝑗 ( 𝐼𝐶𝑀 , 𝐹 , Ω) . (9)

We explored different strategies of optimization by either minimiz-

ng the objective functions averaged over all ICM measures combining

oth original and lagged measures and time delays (one parameter set;

ll ), over only original ( original ), only lagged ( lagged ) or only time delay

 delays ) ICMs (three parameter sets), or for each ICM measure individ-

ally (six parameter sets; individual ). 

.6. Statistics 

In order to probe the structure-function relationships, we computed

he Spearman correlation between SC and phase and envelope ICM val-

es for each frequency band, each animal and the group average. Addi-

ionally, we explored how much of the structure-function relationships

ay be explained by inter-areal distance, using the partial Spearman

orrelations. We also computed marginal Spearman correlations of both

C and ICMs with the distance. Similarity between phase and envelope

CMs was quantified by means of the Spearman correlation between

he respective patterns for each frequency band, each animal and the

roup average. We computed also, for each type of ICM, the interfre-

uency consistency, i.e., the similarity between all pairs of frequency

ands within each animal and the group average, and the interindivid-

al consistency, i.e., the similarity between all pairs of animals within

ach frequency band. Since all brain connectivity measures are symmet-

ical, all correlation coefficients were computed using the upper trian-

ular part of each connectivity matrix for the different scenarios. 

In order to test the significance of the correlation coefficients or the

ignificance of the difference between correlation coefficients (e.g., the

orrelation of pICMs with SC compared to the correlation of eICMs

ith SC), we used surrogate data based on the Fourier tranforma-

ion ( Lancaster et al., 2018 ). Specifically, we used the amplitude-

djusted Fourier transform (AAFT) phase randomization ( Lancaster

t al., 2018; Theiler et al., 1992 ), which generate surrogate data by

huffling the phase spectra of the time series. AAFT preserves both the

inear structure (i.e. the power spectral density and consequently the

uto-correlation) and the amplitude distribution of the individual time

eries while destroying any potential interdependence between time se-

ies. For each animal and each period, we generated 200 surrogates at

he area-level, applied the processing pipeline as designed for the orig-

nal ECoG signal to extract the corresponding ICM measures (we there-

ore obtained 200 phase and envelope ICM surrogates, at each level),

hen, computed the structure-function relationships. To test the signif-

cance of the ICM time delays and their relationship with SC, we built

 permutation-based null model by shuffling the windowed segments

efore calculating cross-correlation. For each animal and each session,

e generated 200 surrogates at the area-level, applied the processing

ipeline as designed for the original ECoG signal to extract the corre-

ponding time delay ICM measures, then, computed the relationships

ith SC and distance. Consequently, we determined the probability ( 𝑝 )

hat the original (difference between) correlation coefficient values be-

ong to the surrogate distributions, i.e. the null hypothesis. To compare
6 
he distributions of the time delays we used the two-sample Kolmogorov-

mirnov test. All statistical tests were rejected at 𝑝 < 0 . 05 significance.

orrection for multiple comparisons was performed by controlling the

alse discovery rate when appropriate ( Benjamini et al., 2006 ). 

. Results 

Intrinsic coupling modes were extracted from micro-ECoG data of

ngoing brain activity from awake ferrets ( Stitt et al., 2017 ). Cortical

ctivity (local field potentials) was recorded in five adult female ferrets

ver multiple sessions using a 64 electrodes array distributed over half

f the left posterior cortical hemisphere. The animals’ brain states had

een previously classified into slow-wave sleep, rapid-eye-movement

leep and awake periods using a data-driven approach ( Stitt et al., 2017 ).

he present study focused only on data from awake periods. Electrodes

ere first re-referenced and then assigned to cortical areas using the

tlas of Bizley and King (2009) , and the average signal for each area

as computed ( Fig. 1 A and B). For each animal and each awake pe-

iod, pICMs and eICMs were computed in a frequency resolved manner

0.5–200 Hz) between all pairs of areas by quantifying phase locking and

ower correlation, respectively, while time delays were computed using

indowed cross-correlations. Subsequently, ICM matrices were aver-

ged within data-driven frequency bands: 3–6 Hz ( 𝜃); 9–20 Hz ( 𝛽1 ); 20–

5 Hz ( 𝛽2 ); and 55–145 Hz ( 𝛾) ( Fig. 1 B and Fig. S1 ). ICM matrices were

veraged across awake periods within each session per animal (session-

evel), across sessions within each animal (animal-level), and also across

nimals (group-level). Results on the animal- and group-levels are pre-

ented in the main text, while results on the session-level are reported in

upplementary figures. The corresponding structural connections of the

reas covered by the micro-ECoG array were assembled from diffusion

RI tractography data ( Delettre et al., 2019 ) ( Fig. 1 C). Finally, in or-

er to predict empirical patterns of ICMs, we employed computational

iophysical models of various complexity ( Fig. 1 D). See Material and

ethods section for further details. 

.1. Structure-function relationships 

The similarity between ICM patterns and the underlying structural

onnectivity was quantified, for each animal and the group average, and

or each frequency band, by means of Spearman correlations between SC

nd phase and envelope ICM values. Envelope ICMs were significantly

ositively correlated to SC across all frequency bands, all animals and

he group average. Phase ICMs were significantly positively correlated

o SC across all frequency bands for the group average, all animals for

he 𝛽2 and 𝛾 bands, and four animals for the 𝛽1 band ( Fig. 2 B). The cor-

elations of phase and envelope ICMs with SC were not significantly dif-

erent across frequency bands for all animals and the group average; we

bserved however consistently higher correlations of eICMs compared

o pICMs with SC. Next, we evaluated the influence of the physical dis-

ance between areas in the structure-function relationships. As expected,

oth SC and ICMs were significantly negatively correlated with distance

except for pICMs for the 𝜃 band in two animals and for the 𝛽1 band in

ne animal). Similar for both, connectivity values decrease with increas-

ng inter-areal distance ( Fig. 2 B). Consequently, the correlation between

C and ICMs was reduced when controlling for distance, where the ef-

ect was more pronounced for pICMs. Phase ICMs were not significantly

orrelated to SC when controling for distance, except for two animals

n the 𝛾 band, while envelope ICMs remained significantly correlated

 Fig. 2 B). 

In addition, in order to deal with potential confounds resulting from

olume conduction, we also computed the correlation between SC and

agged ICM measures ( Fig. 2 C). Envelope ICMs were significantly pos-

tively correlated to SC across all frequency bands, all animals and the

roup average. Phase ICMs were found to be only significantly positively

orrelated to SC in the 𝛾 band across all animals and the group average,
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Fig. 2. Structure-function relationships. (A) Pattern of structural connectivity extracted from diffusion MRI tractography. (B) Correlation between structural 

connectivity and phase and envelope ICMs across frequency bands and animals. (Left) Patterns of group average phase and envelope ICMs across frequency bands. 

(Right) For each ICM measure and each frequency band, we represented the individual correlations (bar chart representing means and associated standard deviations), 

as well as the correlation for the group average (red curve), between SC and ICMs (SC corr), between SC and ICMs when controlling for the distance (SC pcorr), and 

between distance and ICMs (dist corr). The green line represents the correlation between distance and SC. Disks size within each subpanel represents the proportion 

of animals for whom there is a significant correlation (grey circles represent the maximum), red dots represent significant correlation for the group average ( 𝑝 < 0 . 05 , 
FDR-corrected). The rightmost panels (SC corr diff) represent the differences in correlations between ICMs and SC between pairwise low versus high frequency bands. 

Disks size represents the proportion of animals for whom there is a significant difference in correlation (grey circles represent the maximum) and color represents 

the associated averaged difference ( 𝑝 < 0 . 05 , FDR-corrected). (C) Same as (B) when using lagged ICM measures. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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nd in all frequency bands for one animal. One other animal had a sig-

ificant positive correlation with SC in the 𝛽2 band. The correlation of

C with pICMs was significantly lower compared to eICMs in most ani-

als and frequency bands. Envelope ICMs were significantly negatively

orrelated with distance across all frequency bands except the 𝜃 band

or 4 animals and the 𝛽1 band for one animal ( Fig. 2 C). Phase ICMs were

ignificantly negatively correlated with distance only for high frequency

ands. The patterns of correlations between SC and lagged phase and en-

elope ICMs remained overall unchanged when controlling for distance

 Fig. 2 C). 

For both the original and lagged ICM measures, we observed an in-

rease in the correlation with SC with increasing frequency, where corre-

ations appeared significantly lower when comparing pairwise low ver-

us high frequency bands, especially comparing with the 𝛾 band. For the

esults at the level of individual animals see Fig. S2 and Fig. S3 . 

Taken together, the results show that both phase and envelope ICMs

re related to SC, albeit with different strength, and that the relationship

trengthens with increasing frequency. Using ICM measures insensitive

o volume conduction diminishes the association, especially for pICMs.

rain spatial embedding largely influences connectivity patterns (both

tructural and functional), but cannot explain by itself the structure-

unction relationships. In order to better understand how both types of

CM are associated with SC, in the next section we explore in detail ICM

imilarity and consistency. 

.2. ICM similarity and consistency 

The similarity between pICMs and eICMs was quantified, for each

requency band, each animal and the group average, by means of
7 
pearman correlation. Phase and envelope ICMs were significantly pos-

tively correlated with each other in all frequency bands for all ani-

als ( Fig. 3 A). Consistency of ICM measures across frequency bands

as quantified, for each pair of frequency bands, each animal and the

roup average, by means of Spearman correlation. We observed a signif-

cant high interfrequency consistency for each ICM measure which was

onsistent across animals ( Fig. 3 A). Of note, the similarity was higher

etween ICM measures within frequency bands than across frequency

ands for each ICM measure. We also assessed the consistency of both

CM measures across animals, for each pair of animals, and each fre-

uency band, by means of Spearman correlation. Interindividual con-

istency was largely significant across animals for both ICM measures,

ut with moderate correlation values, except for the pICMs in the 𝜃 and

1 bands ( Fig. 3 A). 

When lagged ICM measures were used, consistent results were

lso observed, but correlation values were much lower ( Fig. 3 B).

hase and envelope ICMs were significantly positively correlated with

ach other for all frequency bands and animals, albeit at a lower

evel compared to the original ICM measures ( Fig. 3 B). Interfre-

uency consistency of lagged ICMs was significant across most ani-

als and pairs of frequency bands, albeit at a much lower level com-

ared to the original ICM measures ( Fig. 3 B). Interindividual con-

istency of eICMs was significant across all pairs of animals and all

requency bands, while it was virtually non significant for pICMs

 Fig. 3 B). 

For both the original and lagged measures, we observed an increase

n the interindividual consistency of phase and envelope ICMs with in-

reasing frequency. For a more detailed presentation of the results at

he level of individual animals see Fig. S4 and Fig. S5 . 
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Fig. 3. ICM similarity and consistency. (A) Similarity of phase and envelope 

ICMs, and consistency across frequency bands and animals. (Left) Correlation 

between phase and envelope ICMs across frequency bands and animals. (Top) 

For each frequency band, we represented the individual correlations (bar chart 

representing means and associated standard deviations), as well as the correla- 

tion for the group average (red curve). (Bottom) Example scatter plot of phase 

versus envelope ICM values for the group average in the 𝛽1 band. (Middle) Cor- 

relation of phase (top) and envelope (bottom) ICM patterns between frequency 

bands. For each ICM measure, each animal (1 to 5) and the group average ( 𝑎 ), 

we represented all pairwise correlations between frequency bands (bar chart 

representing means and associated standard deviations). (Right) Correlation of 

phase (top) and envelope (bottom) ICM patterns between animals. For each 

ICM measure and each frequency band, we represented all pairwise correla- 

tions between animals (bar chart representing means and associated standard 

deviations). Disks size within each subpanel represents the proportion of corre- 

lations significant (grey circles represent the maximum), red dots represent sig- 

nificant correlation for the group average ( 𝑝 < 0 . 05 , FDR-corrected). (B) Same 

as (A) when using lagged ICM measures. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Taken together, the results show that the original phase and enve-

ope ICMs are largely similar to each other and consistent across fre-

uencies. Using lagged ICM measures considerably diminishes the con-

istency across frequencies, especially for pICMs, but maintains a rela-

ively high similarity between measures. These results support consis-

ent structure-function relationship for both phase and envelope as ob-

erved in the previous section. Furthermore, ICM measures appear more

onsistent across animals with increasing frequency. To further support

he perspective of a genuine structure-function relationship which is not

olely due to experimental artifacts, especially volume conduction ef-

ects, in the next section we explore time delays. 

.3. Time delay ICMs 

Phase (resp. envelope) time delay ICMs were computed, for each

requency band, each animal and the group average, by the lag at which

he normalized cross-correlation of the signal (resp. envelope) had the

argest absolute value. Time delay values appeared to drop for increasing

requency ( Fig. 4 ). Time delay values were significantly lower than the

nes from the surrogate data. Comparing phase and envelope time delay
8 
CMs, we observed that eICM delays appeared more broadly distributed,

nd were significantly smaller than pICM delays for the 𝜃 and 𝛽1 bands

 𝑝 < 0 . 05 , Kolmogorov-Smirnov test). Importantly, virtually all delays

ere different from zero. 

Then, the similarity between time delay ICMs, the underlying struc-

ural connectivity and distance was quantified, for each animal and the

roup average, and for each frequency band, by means of Spearman cor-

elations between connectivity values. Phase and envelope time delay

CMs were both significantly negatively correlated to SC across virtually

ll frequency bands, all animals and the group average; while they were

oth significantly positively correlated to distance ( Fig. 4 ). The correla-

ion between SC and ICMs time delays were reduced when controlling

or distance; the effect was more pronounced for pCIMs where partial

orrelation values were only significant for high frequencies in few an-

mals. Interestingly, similar to the structure-function relationship, the

orrelation between time delay ICMs and both SC and distance strength-

ns with increasing frequency. For a more detailed presentation of the

esults at the level of individual animals see Fig. S6 . 

Taken together, the results show that phase and envelope ICMs arise

ostly from non-zero lag interactions. Consequently, the observed re-

ationship between structural connectivity and ICMs cannot be solely

ttributed to volume conduction artifacts. Moreover, the decreasing de-

ay with increasing frequency could explain the associated increasing

tructure-function relationship. Next, we explored the ability of classi-

al computational models to predict such ICM patterns. 

.4. Computational modeling 

We employed computational models at different levels of complexity

or predicting ICM measures: (i) a microscopic description, the spiking

ttractor network (SAN) model, a biologically realistic model of a large

etwork of spiking neurons; (ii) a mesoscopic model, the Wilson-Cowan

WC) model, a popular neural-mass model of coupled excitatory and in-

ibitory populations; and (iii) the spatial autoregressive (SAR) model, a

tatistical model capturing the macroscopic stationary behavior of a dif-

use process on networks. We quantitatively fit the models using differ-

nt optimization strategies to explore the models’ ability to predict ICM

easures (see Material and Methods section for details). Model param-

ters were chosen to minimize an objective function, defined as the dis-

ance between simulated and empirical ICMs averaged across frequency

ands. We either minimized the objective function averaged across all

CM measures combining both original and lagged measures and time

elays (one parameter set; all ), over only original ( original ), only lagged

 lagged ) or only time delays ( delay ) ICMs (three parameter sets), or for

ach ICM measure individually (six parameter sets; individual ). 

Parameter space exploration highlights the sensitivity of the objec-

ive function to model parameter values, the global coupling strength

nd mean delay ( Fig. S7 ). In general, optimal parameters settings (min-

mizing the distance between simulated and empirical ICMs) across the

ifferent strategies are located within the same area. Globally, compu-

ational models predicted phase and envelope ICMs in a very similar

ay ( Fig. 5 ). All correlations between simulated and empirical ICMs

ere significantly positive, except for lagged ICM measures at low fre-

uency. Even when specifically optimizing lagged ICM measures ( lagged

nd individual ), no model seemed to be able to predict these ICM pat-

erns accurately, especially for pICMs. Moreover, time delay ICMs were

enerally poorly predicted by any model and strategy (of note, the SAR

odel was not considered as it does not include delays in its formal-

sm). Simulated ICMs were not significantly more strongly correlated to

he empirical data, when compared to the respective correlations with

C, except for the original envelope ICMs and to some extent the lagged

nvelope ICMs ( Fig. S8 ). 

Overall, these results highlight the challenge of properly fitting bio-

hysical models to rich empirical datasets. The overall predictive abil-

ty of these models appears to rely moslty on the general association

etween the underlying SC with the empirical ICMs. 
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Fig. 4. Time delay ICMs. (A) Pattern of structural connectivity extracted from diffusion MRI tractography. (B) Correlation between structural connectivity and 

phase and envelope time delay ICMs across frequency bands and animals. (Left) Patterns of group average phase and envelope time delay ICMs across frequency 

bands. (Middle) Distribution of time delays extracted for phase and envelope ICMs and the corresponding surrogates (gray). (Left) For each ICM measure and each 

frequency band, we represented the individual correlations (bar chart representing means and associated standard deviations), as well as the correlation for the 

group average (red curve), between SC and time delay ICMs (SC corr), between SC and time delay ICMs when controlling for the distance (SC pcorr), and between 

distance and time delay ICMs (dist corr). Disks size within each subpanel represents the proportion of animals for whom there is a significant correlation (grey circles 

represent the maximum), red dots represent significant correlations for the group average ( 𝑝 < 0 . 05 , FDR-corrected). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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. Discussion 

.1. Overview 

In the present study, we investigated the relationship between struc-

ural connectivity and ICMs of ongoing dynamics in the ferret brain. We

ook advantage of the high temporal resolution offered by micro-ECoG

easurements to explore these relationships across multiple frequency

ands and different animals. We also investigated the similarity between

hase and envelope ICMs across frequency bands, as well as their inter-

requency and interindividual consistency. Additionally, we computed

he time delays at which ICMs occur. Finally, we explored and com-

ared the performance of computational models of various complexity

n predicting simultaneously envelope and phase ICMs. All investiga-

ions were conducted with classical ICM measures as well as with lagged

easures insensitive to volume conduction effects. Generally, we found

hat SC was significantly related to both phase and envelope ICMs, but

o different degrees. When using original ICM measures both pICMs and

ICMs were largely similar and consistent across frequency bands and

nimals. However, using lagged ICM measures virtually abolished the

ssociation of pICMs with SC, except for high frequency, and reduced

heir consistency and similarity with eICM. Importantly, ICMs that occur

t non-zero lag discard explanations purely due to volume conduction.

omputational models are challenged to predict these ICM patterns con-

istently and simultaneously. The models are generally good at predict-

ng original ICM measures, but fail for the lagged ones, especially at low

requency. Overall, our results suggest that ICMs during ongoing activ-

ty in awake ferrets reflect, to a significant degree, the organization of

natomical cortical networks, but are likely also influenced by further

actors. 

.2. Structure-function relationships 

In previous studies, envelope ICMs and their association with struc-

ural connectivity were mainly investigated using resting-state fMRI

ata, where consistent positive correlations were reported ( Greicius

t al., 2009; Hagmann et al., 2008; Koch et al., 2002; Messé, 2020; Messé

t al., 2014; Vincent et al., 2007 ), reviewed in ( Straathof et al., 2019 ).

ome recent studies have extended and confirmed these observations

ased on the refined temporal resolution offered by electrophysiolog-

cal measurements. The relationship between pICMs and SC has been

xplored using both EEG ( Chu et al., 2015; Finger et al., 2016; Wirsich
9 
t al., 2017 ) and MEG ( Meier et al., 2016; Tewarie et al., 2014 ) data,

hile eICMs were investigated using MEG recordings ( Garcés et al.,

016; Tewarie et al., 2019 ). Similar to the resting-state literature, a pos-

tive relationship between both types of ICMs with SC has been reported

onsistently, but its potential frequency dependence has not been thor-

ughly investigated ( Chu et al., 2015; Garcés et al., 2016 ). Here, we

onfirm these observations by showing that both types of ICMs are pos-

tively correlated with SC, with correlations increasing with increasing

requency. As a matter of fact, both measures also appeared to be cor-

elated to each other independently of the frequency. Additionally, we

bserved a relatively high consistency of the original ICM measures both

cross frequencies and animals, similar to observations in MEG record-

ngs ( Colclough et al., 2016 ). 

One important confound in the analysis of functional connectivity

sing electrophysiological measurements is the potential presence of sig-

al mixing due to volume conduction. A number of measures and proce-

ures have been designed to mitigate such effects. Most of them specif-

cally remove zero-lag synchronization or coactivations ( Bastos and

choffelen, 2016 ). Nonetheless, reliable estimation of ICMs with elec-

rophysiological recordings remains challenging due to signal mix-

ng ( Palva et al., 2018; Siems and Siegel, 2020 ). We observed that the

imilarity between phase and envelope ICMs, their consistency across

requencies and animals are largely abolished when using lagged mea-

ures, as previously reported ( Colclough et al., 2016; Galindo-Leon et al.,

019 ), especially for pICMs. The correlation of pICMs with SC appears

lso largely reduced and virtually abolished, except for high frequency,

ompared to the original measures, while the correlation of eICMs with

C was reduced, but remained essentially unchanged. These results sug-

est that the classical phase ICM measures might be strongly driven by

ear-zero coactivations, which are in part resulting from volume con-

uction, but are in part also due to physiological synchrony ( Engel et al.,

013; Fries, 2005; Uhlhaas and Singer, 2012 ), which occurs most promi-

ently across short distances and depends on the underlying network

tructure ( Messé et al., 2018 ). 

To verify this explanation, we also extracted the corresponding time

elays of phase and envelope ICMs. The results showed that both phase

nd envelope ICMs essentially occur at non-zero delays, and thus dis-

ard the possibility that the structure-function relationship is largely

riven by volume conduction. In addition, the time delay values ap-

eared to drop for increasing frequency bands, which coincides with

he increased structure-function association. These observations agree

ith the finding ( Vezoli et al., 2021 ) that ICMs derived by micro-ECoG
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Fig. 5. Predictive power of the computational models. (A) Correlation between simulated and empirical phase and envelope ICMs across frequency bands and 

models when using original ICM measures. Columns represent the different optimization strategies. We either minimized the objective function averaged across 

all ICM measures combining both original, lagged and time delay measures (first column, all ), over only original (second column, original ), only lagged (third 

column, lagged ) or only time delay (fourth column, delay ) ICM measures, or for each ICM measure individually (last column, individual ). Circles represent significant 

correlations ( 𝑝 < 0 . 05 , FDR-corrected). (B, resp. C) Same as (A) when using lagged (resp. time delay) ICMs. Of note, we took the absolute value of the correlation 

between time delay ICMs and SC for visual comparison. 
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ecordings in the macaque cerebral cortex also more closely align with

tructural connectivity for higher frequencies ( 𝛾) than lower frequen-

ies ( 𝛽). Interestingly, theoretical work has demonstrated a structure-

unction discrepancy in the presence of heterogeneous delays between

euronal populations ( Ton et al., 2014 ). 

.3. ICMs models 

Computational brain models provide a parsimonious approach to

xplore the generative mechanisms of ICMs ( Breakspear, 2017; Cabral

t al., 2014a; 2017 ). Most modeling studies have investigated the emer-

ence of envelope ICMs using resting-state fMRI ( Deco et al., 2011;
10 
oney et al., 2009; Messé et al., 2014; 2015b ) or MEG data ( Abeysuriya

t al., 2018; Cabral et al., 2014b; Tewarie et al., 2019 ), while few

tudies have explored the generative processes of phase ICMs using

EG ( Abeysuriya et al., 2018 ) or EEG ( Finger et al., 2016 ) recordings.

sing computational models of various scales of complexity, we showed

heir potential for predicting both types of ICMs. None of the models in-

estigated here appears to be able to predict simultaneously original

nd lagged ICM measures. As a matter of fact, no model could predict

agged measures, even when fitting the models explicitly to these mea-

ures, especially for phase ICMs. This finding is corroborated by the

oor predictive ability of the models with regard to the time delays. In-

eed, lagged measures are by definition dependent on delays as they



A. Messé, K.J. Hollensteiner, C. Delettre et al. NeuroImage 276 (2023) 120212 

e  

i  

I  

A  

i  

b  

M

4

 

f  

e  

s  

t  

t  

2  

s  

r  

p  

2  

r  

a  

o  

n  

t  

v  

i  

i  

p  

a  

b  

e  

s  

p  

v  

r

4

 

t  

r  

g  

s  

r

e  

p  

t  

o  

i  

v  

S  

a  

2  

b  

w  

f  

t  

i  

s  

l  

t  

d  

F  

o  

t  

i

5

 

p  

n  

s  

r  

v  

f

S

 

t  

p  

o

 

i  

t  

a  

e  

s  

d  

c  

f  

d  

d  

t  

r  

t  

c  

q  

s  

r  

 

i  

t  

a  

e  

s  

d  

c  

f  

d  

d  

t  

r  

t  

c  

q  

s  

r  

 

i  

l  

t  

a  

e  

t  

r  

r  

v  
xplicitely consider non-zero lags ( Nolte et al., 2004 ). One of the most

ntriguing results is the fact that none of the models seems to predict

CM patterns much better than SC by itself, except for envelope ICMs.

s observed here, and as previously shown in resting-state fMRI stud-

es, patterns of functional interactions appear significantly constrained

y the underlying topological scaffold of the brain ( Goñi et al., 2014;

arrelec et al., 2016; Messé et al., 2015b ). 

.4. Biological significance 

On the one hand, the removal of zero-lag interactions avoids arte-

acts that are known to arise from signal mixing at sensor level ( Brookes

t al., 2012; Hipp et al., 2012; Nolte et al., 2004 ). On the other hand,

uch a treatment may also remove actual physiological coupling. Indeed,

he present results confirm that near zero-lag interactions are an essen-

ial component of cortical coupling modes ( Engel et al., 2013; Fries,

005; Siegel et al., 2012; Uhlhaas and Singer, 2012 ). Moreover, de-

pite debates about the origin and spatial extent of cortical signals, as

ecorded with micro-ECoG approaches, recent investigations appear to

oint to a very local specificity ( Dubey and Ray, 2019; Einevoll et al.,

013; Liu et al., 2015 ), comforting the idea that volume conduction is

educed in such experimental setup. Adjacent regions of the ferret cortex

re strongly connected by short fibres ( Delettre et al., 2019 ). This kind

f connectivity supports very fast, near zero-lag interactions between

eighbouring regions ( Engel et al., 2001 ). The importance of these in-

eractions for intrinsic cortical coupling is demonstrated by the obser-

ation that original ICMs strongly depend on the physical embedding

n the cortex and decay with distance ( Fig. 2 B). Conversely, the dom-

nant role of direct, short-distance interactions is abolished for lagged

hase ICMs ( Fig. 2 C). We further support the role of short-distance inter-

ctions by looking at the structure-function correlation across distance

ins (low, medium and long range distances), where we observed a gen-

ral drop in correlation when distance increases ( Fig. S9 ). Moreover, as

tructural cortical connectivity is dominated by short connections, the

redictive power of computational models is much reduced for lagged

ersus original ICM measures. These findings once again underline the

ole of direct structural connectivity in cortical communication. 

.5. Caveats 

The present results are subject to several methodological limita-

ions. First, the spatial coverage of the micro-ECoG array was limited to

oughly one half of a cerebral hemisphere which limits us for a potential

eneralization and prevents us to study, for example, interhemispheric

tructure-function relations which have been addresses in other prepa-

ations before ( Engel et al., 1991 ) but shown to be challenging ( Messé

t al., 2014 ). Additionally, we solely focused on the awake resting-state

eriods in order to make concrete comparisons with the existing litera-

ure mostly based on resting state. Little is known about the modulation

f the structure-function relationships across diverse contexts, includ-

ng, for example, sleep stages or when animals interact with the en-

ironment, deserving further investigations ( Galindo-Leon et al., 2019;

jøgård et al., 2020 ). The study could have benefited also from the use of

n inverse ECoG model to better map the cortical sources ( Pesaran et al.,

018 ). Unfortunately, this approach requires the use of a proper ferret

rain model which is not available yet. In terms of volume conduction,

e mainly focused on first-order effects due to signal mixing, creating

alse positive connectivity at zero lag. However, other spurious interac-

ions may arise from second-order effects, characterized by false pos-

tive connectivity caused by mislocalization of the “true ” interacting

ources ( Palva et al., 2018 ). But, these second-order effects are very chal-

enging to estimate and remove ( Wang et al., 2018 ). Regarding compu-

ational modeling, we made use of standard models together with their

efault settings, except for the coupling strength and the average delay.

or further refinement, one should consider to optimize a larger number
11 
f parameters or even to incorporate knowledge from external modali-

ies including, for example, receptor maps ( Deco et al., 2018 ) or anatom-

cal laminar details ( Schmidt et al., 2018 ), as in Mejias et al. (2016) . 

. Conclusions 

Our results derived from large-scale cortical recordings at high tem-

oral and spatial resolution demonstrate that intrinsic cortical commu-

ication based on envelope as well as phase coupling is shaped, to a

ubstantial degree, by the structural scaffold of cortical connections. It

emains a challenge for future research to refine these relations and de-

elop generally applicable computational models that can fully account

or them. 

upporting information 

Fig S1 Power spectrum and oscillatory modes. (A) Power spec-

ral density estimated across animals and areas (averaged across awake

eriods and sessions). (B) Distribution of the oscillatory peaks detected

ver the 1/f trend across areas and all awake periods of all animals. 

Fig S2 Structure-function relationships across animals when us-

ng original ICM measures. (A) Correlation between structural connec-

ivity and phase and envelope ICMs across frequency bands, animals,

nd sessions when using original ICM measures. For each ICM measure,

ach animal and each frequency band, we represented the individual

ession correlations (bar chart representing means and associated stan-

ard deviations), as well as the correlation for the average session (red

urve), between SC and ICMs (SC corr). (B) Same as (A) when controlling

or the distance (SC pcorr). (C) Same as (A) when correlating ICMs with

istance (dist corr). The green line represents the correlation between

istance and SC. Disks size within each subpanel represents the propor-

ion of sessions for whom there is a significant correlation (grey circles

epresent the maximum), red dots represent significant correlation for

he corresponding animal ( 𝑝 < 0 . 05 , FDR-corrected). (D) Differences in

orrelations between ICMs and SC between pairwise low versus high fre-

uency bands (SC corr diff). Disks size represents the proportion of ses-

ions for whom there is a significant difference in correlation and color

epresents the associated averaged difference ( 𝑝 < 0 . 05 , FDR-corrected).

Fig S3 Structure-function relationships across animals when us-

ng lagged ICM measures. (A) Correlation between structural connec-

ivity and phase and envelope ICMs across frequency bands, animals,

nd sessions when using lagged ICM measures. For each ICM measure,

ach animal and each frequency band, we represented the individual

ession correlations (bar chart representing means and associated stan-

ard deviations), as well as the correlation for the average session (red

urve), between SC and ICMs (SC corr). (B) Same as (A) when controlling

or the distance (SC pcorr). (C) Same as (A) when correlating ICMs with

istance (dist corr). The green line represents the correlation between

istance and SC. Disks size within each subpanel represents the propor-

ion of sessions for whom there is a significant correlation (grey circles

epresent the maximum), red dots represent significant correlation for

he corresponding animal ( 𝑝 < 0 . 05 , FDR-corrected). (D) Differences in

orrelations between ICMs and SC between pairwise low versus high fre-

uency bands (SC corr diff). Disks size represents the proportion of ses-

ions for whom there is a significant difference in correlation and color

epresents the associated averaged difference ( 𝑝 < 0 . 05 , FDR-corrected).

Fig S4 ICM similarity and consistency across animals when us-

ng original ICM measures. (A) Correlation between phase and enve-

ope ICMs. For each animal and each frequency band, we represented

he individual session correlations (bar chart representing means and

ssociated standard deviations), as well as the correlation for the av-

rage session (red curve). (B) Interfrequency consistency of ICM pat-

erns. For each animal, each ICM measure, and each session, we rep-

esented all pairwise correlations between frequency bands (bar chart

epresenting means and associated standard deviations). (C) Intraindi-

idual consistency of ICMs measures. For each animal, each ICM mea-
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ure and each frequency band, we represented all pairwise correlations

etween sessions (bar chart representing means and associated standard

eviations). Disks size within each subpanel represents the proportion of

ignificant correlations (grey circles represent the maximum), red dots

epresent significant correlation for the corresponding animal ( 𝑝 < 0 . 05 ,
DR-corrected). 

Fig S5 ICM similarity and consistency across animals when us-

ng lagged ICM measures. (A) Correlation between phase and enve-

ope ICMs. For each animal and each frequency band, we represented

he individual session correlations (bar chart representing means and

ssociated standard deviations), as well as the correlation for the av-

rage session (red curve). (B) Interfrequency consistency of ICM pat-

erns. For each animal, each ICM measure, and each session, we rep-

esented all pairwise correlations between frequency bands (bar chart

epresenting means and associated standard deviations). (C) Intraindi-

idual consistency of ICMs measures. For each animal, each ICM mea-

ure and each frequency band, we represented all pairwise correlations

etween sessions (bar chart representing means and associated standard

eviations). Disks size within each subpanel represents the proportion of

ignificant correlations (grey circles represent the maximum), red dots

epresent significant correlation for the corresponding animal ( 𝑝 < 0 . 05 ,
DR-corrected). 

Fig S6 Time delay ICMs across animals. (A) Distribution of time

elays extracted for phase and envelope ICMs and the corresponding

urrogates (gray). (B) Correlation between structural connectivity and

hase and envelope time delay ICMs across frequency bands, animals,

nd sessions. For each ICM measure, each animal and each frequency

and, we represented the individual session correlations (bar chart rep-

esenting means and associated standard deviations), as well as the cor-

elation for the average session (red curve), between SC and time delay

CMs (SC corr). (C) Same as (B) when controlling for the distance (SC

corr). (D) Same as (B) when correlating time delay ICMs with distance

dist corr). Disks size within each subpanel represents the proportion

f sessions for whom there is a significant correlation (grey circles rep-

esent the maximum), red dots represent significant correlation for the

orresponding animal ( 𝑝 < 0 . 05 , FDR-corrected). 

Fig S7 Parameter space exploration of the computational mod-

ls. (A) Objective function as a function of the models’ parameters when

sing original ICM measures. Columns represent the different models

left: SAR; middle: WC; and right: SAN). Parameter values were cho-

en to either minimized the objective function averaged across all ICM

easures combining both original, lagged and time delay ICMs (blue

ircle, all ), over only original (red diamond, original ), only lagged (yel-

ow square, lagged ) or only time delay (purple star, delay ) ICMs, or for

ach ICM measure individually (green hexagram, individual ). (B, resp.

) Same as (A) when using lagged (resp. time delay) ICMs. 

Fig S8 Comparison of the predictive power of the computational

odels. (A) Significance of the difference between models in the corre-

ation between simulated and empirical original ICMs across frequency

ands. For each frequency band, each ICM measure, and each optimiza-

ion strategy (columns), we represented the significance of the differ-

nce between all pairs of models (including SC) in the correlation be-

ween simulated and empirical ICM measures. (B, resp. C) Same as (A)

hen using lagged (resp. time delay) ICMs. 

Fig S9 Structure-function relationships as a function of the dis-

ance. Correlation between structural connectivity and phase and en-

elope ICMs across frequency bands and animals. For each ICM mea-

ure and each frequency band, we represented the individual corre-

ations (bar chart representing means and associated standard devia-

ions), as well as the correlation for the group average (red curve),

etween SC and ICMs according to different distance bins (columns).

isks size within each subpanel represents the proportion of animals

or whom there is a significant correlation (grey circles represent the

aximum), red dots represent significant correlation for the group av-

rage ( 𝑝 < 0 . 05 , FDR-corrected). (B) Same as (A) when using lagged ICM

easures. 
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