53 research outputs found

    Biological properties of water-soluble phosphorhydrazone dendrimers

    Get PDF
    Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.Dendrímeros são macromoléculas extremamente ramificadas e perfeitamente definidas constituídas de ramificações que partem de um foco central de uma forma iterativa. Dendrímeros de fosforidrazona constituem uma família especial de dendrímeros, que possuem um átomo de fósforo em cada ponto da ramificação. A estrutura interna destes dendrímeros é hidrofóbica, mas grupos hidrofílicos terminais podem induzir a solubilidade em água de toda estrutura. De fato, as propriedades destes compostos são principalmente orientadas pelos grupos terminais que apresentam, especialmente para as propriedades biológicas. Por exemplo, grupos terminais carregados positivamente são eficientes para experimentos de transfecção, como transportadores de fármacos, agentes antipríons e como inibidores da agregação de peptídeos do Alzheimer, enquanto que dendrímeros carregados negativamente têm propriedades anti-HIV e podem influenciar o sistema imune humano, levando propriedades antiinflamatórias úteis contra artrite reumatoide. Essa revisão dará os exemplos mais representativos das propriedades biológicas de dendrímeros de fosforidrazona solúveis em água, organizados de acordo com os grupos terminais que possuem

    PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity

    Get PDF
    Polyphosphorhydrazone (PPH) dendrimers have been grafted on silica nanoparticles, and the surface functions of the dendrimers have been derivatized to phosphonates with lateral poly(ethyleneglycol) (PEG) chains. All materials have been thoroughly characterized by MAS NMR, FT-IR, electron microscopy, TGA and elemental analysis. These materials successfully hosted silver and silver oxide nanoparticles. The resulting composites exhibit antibacterial activity

    Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent

    Get PDF
    INTRODUCTION: Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation. METHODS: Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers. RESULTS: Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86. CONCLUSION: Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC

    PPH-Based Dendrimers as HIV Entry Inhibitors

    No full text
    International audienceThis chapter reviews the different antiviral approaches with dendrimers with a particular focus on the strategy based on multivalent non-covalent human immunodeficiency virus (HIV) entry inhibitors. It describes the poly(phosphorhydrazone) dendrimers were used as building blocks for the preparation of multivalent analogs of GalCer. The chapter discusses the strategy that proposes to use the affinity of the virus for GalCer to inhibit HIV entry into cells. Gene expression of HIV-1 could be inhibited by molecules targeting viral gene regulatory proteins that drastically enhances the efficiency of viral transcription, such as Tat or its molecular targets. The Tat-TAR interactions are crucial to ensure an efficient viral transcription. The recognition of DC-SIGN involves multivalent interaction with mannose-rich glycoproteins of pathogens; dendrimers and other multivalent scaffolds have been successfully used to target these interactions. The design of multivalent inhibitors or ligands targeting cell receptors is directly inspired by the existence of polyvalent interactions in biological systems

    Ferrocenyl phosphorhydrazone dendrimers dynthesis, and electrochemical and catalytic properties

    No full text
    International audienceThe discovery of ferrocene is often associated with the rapid growth of organometallic chemistry. Dendrimers are highly branched macromolecules that can be functionalized at will at all levels of their structure. The functionalization of dendrimers with ferrocene derivatives can be carried out easily as terminal functions on the surface, but also at the core, or at one or several layers inside the structure. This review will focus on phosphorhydrazone dendrimers functionalized with ferrocene derivatives, on the surface, at the core, at all layers or within a single layer inside the structure. The first part will describe the synthesis; the second part will concern the electrochemical properties; and the last part will give several examples concerning catalysis, with complexes of ferrocenyl phosphines used as terminal functions of dendrimers

    Curing inflammatory diseases using phosphorous dendrimers

    No full text
    International audienceDifferent types of water-soluble phosphorous dendrimers have been synthesized and display many different biological properties. It has been shown in particular that phosphorous dendrimers of first generation functionalized with azabisphosphonate terminal functions are able to stimulate the human immune system ex vivo. These dendrimers are internalized by monocytes within a few seconds, and induce their anti-inflammatory activation. The presence of the dendrimers induces also the inhibition of the differentiation of monocytes into osteoclasts, the maturation of dendritic cells, and inhibits the proliferation of the proinflammatory CD4+ T lymphocytes. Finally, after 2–3 weeks of culture of peripheral blood mononuclear cells, amplifications by several tens of natural killer cells is observed. In view of all these properties, the influence of these azabisphosphonate-dendrimers has been tested in vivo with several animal models, against different chronic or acute inflammatory diseases, such as multiple sclerosis, rheumatoid arthritis, uveitis, and psoriasis, but also against myeloid leukemia, a hematological cancer. The hematological safety has been demonstrated in mice, as there is no platelet aggregation, no hemolysis, and no disturbance in the hematological formula. The safety of the azabisphosphonate-dendrimer has been assessed also with non-human primates (cynomolgus monkeys) which received repeated injections, as a de-risking pre-clinical test. Biochemical, hematological, and all immunological parameters in peripheral blood remained within a normal physiological range throughout the study, and all survived well. Other phosphorous dendrimers also display anti-inflammatory properties in vivo, in particular dendrimers functionalized with mannose derivatives, which prevent acute lung diseases when given orally (per os) to mice
    • …
    corecore