79 research outputs found

    The cosmic evolution of dust-corrected metallicity in the neutral gas

    Full text link
    Interpreting abundances of Damped Ly-α\alpha Absorbers (DLAs) from absorption-line spectroscopy has typically been a challenge because of the presence of dust. Nevertheless, because DLAs trace distant gas-rich galaxies regardless of their luminosity, they provide an attractive way of measuring the evolution of the metallicity of the neutral gas with cosmic time. This has been done extensively so far, but typically not taking proper dust corrections into account. The aims of this paper are to: i) provide a simplified way of calculating dust corrections, based on a single observed [XX/Fe], ii) assess the importance of dust corrections for DLA metallicities and their evolution, and iii) investigate the cosmic evolution of iron for a large DLA sample. We have derived dust corrections based on the observed [Zn/Fe], [Si/Fe], or [S/Fe], and confirmed their robustness. We present dust-corrected metallicities in a scale of [Fe/H]tot_{\rm tot} for 236 DLAs over a broad range of zz, and assess the extent of dust corrections for different metals at different metallicities. Dust corrections in DLAs are important even for Zn (typically of 0.1-0.2, and up to 0.50.5~dex), which is often neglected. Finally, we study the evolution of the dust-corrected metallicity with zz. The DLA metallicities decrease with redshift, by a factor of 50-100 from today to 12.6\sim12.6 billion years ago (z=5z=5). When including dust corrections, the average DLA metallicities are 0.4--0.5~dex higher than without corrections. The upper envelope of the relation between metallicity and zz reaches solar metallicity at z0.5z\lesssim0.5, although some systems can have solar metallicity already out to z3z\sim3.Comment: Forthcoming in A&A. 16 pages, 5 figures, 3 table

    Molecular hydrogen and the nature of damped Lyman-alpha systems

    Full text link
    We report results from our mini-survey for molecular hydrogen in eight high redshift damped Lyman-alpha (DLA) systems using the ESO Ultra-violet and Visible Spectrograph on the VLT. In addition, we investigate two systems using ESO public data. We include in the sample the only system where H2 was previously detected and studied at high-spectral resolution. Altogether our sample consists of eleven absorbers with 1.85<z_abs<3.4. We confirm the presence of H2 in the z_abs = 2.3377, metal-poor ([Si/H] = -1.20) system toward PKS 1232+082. The derived molecular fraction, f = 2N(H2)/(2N(H2)+N(HI)) = 4 10-4, is two orders of magnitude less than what has been claimed previously from low-resolution data. The physical conditions within the cloud can be constrained directly from observation. The kinetic temperature and particle density are in the ranges, respectively, 100<T<300 K and 30<nH<50 cm-3. In addition, UV pumping is of the same order of magnitude than in our Galaxy. The upper limits on the molecular fraction derived in nine of the systems are in the range 1.2 10-7 - 1.6 10-5. The molecular abundance in a few DLA systems (and in particular in the two systems where H2 is detected) is consistent with what is seen in the Magellanic clouds. But most of the DLA measurements are well below these values. This is probably partly due to small amounts of dust and/or high UV flux. We argue however that the lack of molecules is a direct consequence of high kinetic temperature (T>3000 K) implying a low formation rate of H2 onto dust grains. Therefore, most of the DLA systems arise in warm and diffuse neutral gas. (Abridged)Comment: 6 pages, 5 figures, A&A Latex. Accepted for publication in A&A Special issu

    Carbon nanotubes as a 1D template for the synthesis of air sensitive materials: about the confinement effect

    Get PDF
    Cobalt ferrite and cobalt iron nanowires with an average diameter of 50 nm and lengths up to several micrometers were synthesized inside multi-walled carbon nanotubes (MWNTs) under mild reaction conditions, i.e. 100 °C and atmospheric pressure, using an aqueous nitrate precursor salt filling the tubes. The concept of a confinement effect inside carbon nanotubes has been advanced to explain the formation of CoFe2O4 under such mild reaction conditions. The formation of caps near the tube tips at the beginning of the nitrate decomposition meant that each nanotube was considered as a closed nanoreactor, in which the reaction conditions could be very different to the macroscopic conditions outside the tube. The subsequent reduction of the CoFe2O4 allowed to obtain CoFe nanowires cast in the carbon nanotubes. These nanowires exhibit a high resistance towards oxidation, whereas bulk CoFe is known to undergo oxidation at room temperature and atmospheric pressure. This phenomenon was attributed to oxygen diffusion problems due to the confinement effect of the carbon nanotubes

    Multiphase Plasma in Sub-Damped Lyman Alpha Systems: A Hidden Metal Reservoir

    Get PDF
    We present a VLT/UVES spectrum of a proximate sub-damped Lyman-alpha (sub-DLA) system at z=2.65618 toward the quasar Q0331-4505 (z_qso=2.6785+/-0.0030). Absorption lines of O I, Si II, Si III, Si IV, C II, C III, C IV, Fe II, Al II, and O VI are seen in the sub-DLA, which has a neutral hydrogen column density log N(H I)=19.82+/-0.05. The absorber is at a velocity of 1820+/-250 km/s from the quasar; however, its low metallicity [O/H]=-1.64+/-0.07, lack of partial coverage, lack of temporal variations between observations taken in 2003 and 2006, and non-detection of N V imply the absorber is not a genuine intrinsic system. By measuring the O VI column density and assuming equal metallicities in the neutral and ionized gas, we determine the column density of hot ionized hydrogen in this sub-DLA, and in two other sub-DLAs with O VI drawn from the literature. Coupling this with determinations of the typical amount of warm ionized hydrogen in sub-DLAs, we confirm that sub-DLAs are a more important metal reservoir than DLAs, in total comprising at least 6-22% of the metal budget at z~2.5.Comment: 5 pages, 3 color figures, accepted for publication in ApJ

    Dust reddening and extinction curves towards gamma-ray bursts at z > 4

    Full text link
    Dust is known to be produced in the envelopes of AGB stars, the expanded shells of supernova (SN) remnants, and in situ grain growth in the ISM, although the corresponding efficiency of each of these dust formation mechanisms at different redshifts remains a topic of debate. During the first Gyr after the Big Bang, it is widely believed that there was not enough time to form AGB stars in high numbers, so that the dust at this epoch is expected to be purely from SNe, or subsequent grain growth in the ISM. The time period corresponding to z ~5-6 is thus expected to display the transition from SN-only dust to a mixture of both formation channels as we know it today. Here we aim to use afterglow observations of GRBs at redshifts larger than z>4z > 4 in order to derive host galaxy dust column densities along their line-of-sight and to test if a SN-type dust extinction curve is required for some of the bursts. GRB afterglow observations were performed with the 7-channel GROND Detector at the 2.2m MPI telescope in La Silla, Chile and combined with data gathered with XRT. We increase the number of measured AVA_V values for GRBs at z > 4 by a factor of ~2-3 and find that, in contrast to samples at mostly lower redshift, all of the GRB afterglows have a visual extinction of AVA_V < 0.5 mag. Analysis of the GROND detection thresholds and results from a Monte-Carlo simulation show that, although we partly suffer from an observational bias against highly extinguished sight-lines, GRB host galaxies at 4 < z < 6 seem to contain on average less dust than at z ~ 2. Additionally, we find that all of the GRBs can be modeled with locally measured extinction curves and that the SN-like dust extinction curve provides a better fit for only two of the afterglow SEDs. For the first time we also report a photometric redshift of z=7.88z = 7.88 for GRB 100905A, making it one of the most distant GRBs known to date.Comment: 26 pages, 37 figure

    The VLT-UVES Survey for Molecular Hydrogen in High-Redshift Damped Lyman α Systems: Physical Conditions in the Neutral Gas

    Get PDF
    We study the physical conditions in damped Lyman α systems (DLAs), using a sample of 33 systems towards 26 quasi-stellar objects (QSOs) acquired for a recently completed survey of H2 by Ledoux, Petitjean & Srianand. We use the column densities of H2 in different rotational levels, together with those of C I, C I*, C I**, C II* and singly ionized atomic species to discuss the kinetic temperature, the density of hydrogen and the electronic density in the gas together with the ambient ultraviolet (UV) radiation field. Detailed comparisons are made between the observed properties in DLAs, the interstellar medium (ISM) of the Galaxy and the Large and Small Magellanic Clouds (LMCs and SMCs). The mean kinetic temperature of the gas corresponding to DLA subcomponents in which an H2 absorption line is detected, derived from the ortho-to-para ratio (OPR) (153 ± 78 K), is higher than that measured in the ISM (77 ± 17 K) and in Magellanic Clouds (82 ± 21 K). Typical pressure in these components (corresponding to T = 100–300 K and nH = 10−200 cm−3), measured using C I fine-structure excitation, are higher than what is measured along ISM sightlines. This is consistent with the corresponding higher values for N(H2, J = 2)/N(H2, J = 0) seen in DLAs. From the column densities of the high-J rotational levels, we derive that the typical radiation field in the H2-bearing components is of the order of or slightly higher than the mean UV field in the Galactic ISM. Determination of electron density in the gas with H2 and C I shows that the ionization rate is similar to that of a cold neutral medium (CNM) in a moderate radiation field. This, together with the fact that we see H2 in 13–20 per cent of the DLAs, can be used to conclude that DLAs at z \u3e 1.9 could contribute as much as 50 per cent star formation rate (SFR) density seen in Lyman break galaxies (LBGs). C II* absorption line is detected in all the components where H2 absorption line is seen. The excitation of C II in these systems is consistent with the physical parameters derived from the excitation of H2 and C I. We detect CII* in about 50 per cent of the DLAs and, therefore, in a considerable fraction of DLAs that do not show H2. In part of the later systems, physical conditions could be similar to that in the CNM gas of the Galaxy. However, the absence of C I absorption line and the presence of Al III absorption lines with a profile similar to the profiles of singly ionized species suggest an appreciable contribution from a warm neutral medium (WNM) and/or partially ionized gas. The absence of H2, for the level of metallicity and dust depletion seen in these systems, is consistent with low densities (i.e.nH≤ 1 cm−3) for a radiation field similar to the mean Galactic UV field

    Molecular hydrogen at z=1.973 toward Q0013-004: Dust depletion pattern in damped Lyman-alpha systems

    Full text link
    We study the dust depletion pattern in eight well separated components of the z=1.973, logN(HI)=20.83, damped Lyman-alpha system toward Q0013-004, four of which have detectable H2 absorption. The apparent correlation between the abundance ratios [Fe/S] and [Si/S] in the components indicates that the abundance pattern is indeed due to dust-depletion. In particular, we find evidence for depletion similar to what is observed in cold gas of the Galactic disk ([Fe/Zn]=-1.59, Fe/S=-1.74, Zn/S=-0.15, [Si/S]=-0.85) in one of the weakest components in which molecular hydrogen is detected with logN(H2)=16.5. This is the first time such a large depletion is seen in a DLA system. This observation supports the possibility that current samples of DLA systems might be biased against the presence of cold and dusty gas along the line of sight. The overall metallicities of this peculiar DLA system in which OI and CII are spread over 1050 km/s are [P/H]=-0.64, [Zn/H]=-0.74 and [S/H]=-0.82 relative to solar. The sub-DLA system at z=1.96753 has [P/H]>0.06, [Zn/H]>-0.02 and [S/H]>-0.18. The overall molecular fraction is in the range -2.7<logf<-0.6. CO is not detected (logN(CO)/N(HI)<-8) and HD could be present at z=1.97380. We show that the presence of H2 is closely related to the physical conditions of the gas: high particle density together with low temperature. The observed excitation of high J H2 levels and the molecular fraction show large variations from one component to the other suggesting that the UV radiation field is highly inhomogeneous throughout the system. Gas pressure, estimated from CI absorptions, is larger than what is observed in the ISM of our Galaxy. All this is probably a consequence of intense star-formation activity in the vicinity of the absorbing gas. (Abridged)Comment: 9 pages, 8 figures, MNRAS Latex. Accepted for publication in MNRA

    The very large telescope ultraviolet and visible echelle spectrograph survey for molecular hydrogen in high-redshift damped Lyman αsystems

    Get PDF
    We have searched for molecular hydrogen in damped Lyman &#945; (DLA) and sub-DLA systems at high redshift (zabs &gt; 1.8) using the Ultraviolet and Visible Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) down to a detection limit of typically N(H2) = 2 &#215; 1014 cm-2. Out of the 33 systems in our sample, eight have firm and two have tentative detections of associated H2 absorption lines. Considering that three detections were already known from past searches, molecular hydrogen is detected in 13-20 per cent of the newly surveyed systems. We report new detections of molecular hydrogen at zabs= 2.087 and 2.595 toward, respectively, Q 1444+014 and Q 0405-443, and also reanalyse the system at zabs= 3.025 toward Q 0347-383. In all of the systems, we measure metallicities relative to solar, [X/H] (with either X = Zn, S or Si), and depletion factors of Fe, [X/Fe], supposedly on to dust grains, and compare the characteristics of our sample with those of the global population of DLA systems (60 systems in total). We find that there is a correlation between the metallicity and the depletion factor in both our sample and also the global population of DLA systems. Although H2 molecules are detected in systems with [Zn/Fe] as small as 0.3, the DLA and sub-DLA systems where H2 is detected are usually amongst those having the highest metallicities and the largest depletion factors. In particular, H2 is detected in the five systems having the largest depletion factors. Moreover, the individual components where H2 is detected have depletion factors systematically larger than other components in the profiles. In two different systems, one of the H2-detected components even has [Zn/Fe]&#8805;1.4. These are the largest depletion factors ever seen in DLA systems. All of this clearly demonstrates the presence of dust in a large fraction of the DLA systems. The mean H2 molecular fraction, f= 2N (H2)/[2N(H2) +N(H i)], is generally small in DLA systems (typically log f &lt; -1) and similar to what is observed in the Magellanic Clouds. There is no correlation between the observed amount of H2 and the H i column density. In fact, two systems where H2 is detected have log N(H i) &#60; 20.3 and, therefore, are sub-DLA systems. From 58 to 75 per cent of the DLA systems have log f &lt; -6. This can be explained if the formation rate of H2 on to dust grains is reduced in those systems, probably because the gas is warm (T &gt; 1000 &#922;) and/or the ionizing flux is enhanced relative to what is observed in our Galaxy

    Metal-Enriched Plasma in Protogalactic Halos: A Survey of N V Absorption in High-z Damped & Sub-Damped Lyman-alpha Systems

    Get PDF
    We continue our recent work to characterize the plasma content of high-redshift damped and sub-damped Lyman-alpha systems (DLAs/sub-DLAs), which represent multi-phase gaseous (proto)galactic disks and halos seen toward a background source. We survey N V absorption in a sample of 91 DLAs and 18 sub-DLAs in the redshift range 1.67<z<4.28 with unblended coverage of the N V doublet, using data from VLT/UVES, Keck/HIRES, and Keck/ESI. In DLAs, we find eight secure N V detections, four marginal detections, and 79 non-detections. The detection rate of N V in DLAs is therefore 13^{+5}_{-4}%. Two sub-DLA N V detections are found among a sample of 18, at a similar detection rate of 11^{+15}_{-7}%. We show that the N V detection rate is a strong function of metallicity, increasing by a factor of ~4 at [N/H]=[NI/HI]>-2.3. The N V and CIV component b-value distributions in DLAs are statistically similar, but the median b(N V) of 18 km/s is lower than the median b(O VI) of 25 km/s. Some ~20% of the N V components have b<10 km/s and thus arise in warm photoionized plasma at log (T/K)<4.92; local sources of ionizing radiation (as opposed to the extragalactic background) are required to keep the cloud sizes physically reasonable. The nature of the remaining ~80% of (broad) N V components is unclear; models of radiatively-cooling collisionally-ionized plasma at log(T/K)=5.2-5.4 are fairly successful in reproducing the observed integrated high-ion column density ratios and the component line widths, but we cannot rule out photoionization by local sources. Finally, we identify several unusual DLAs with extremely low metallicity (<0.01 solar) but strong high-ion absorption [log N(N V)>14 or log N(O VI)>14.2] that present challenges to either galactic inflow or outflow models.Comment: 26 pages, accepted by Astronomy and Astrophysics, updated with proof change
    corecore