84 research outputs found

    Ultrathin, flexible and MRI-compatible microelectrode array for chronic single units recording within subcortical layers

    Full text link
    Current techniques of neuroimaging, including electrical devices, are either of low spatiotemporal resolution or invasive, impeding multiscale monitoring of brain activity at both single cell and network levels. Overcoming this issue is of great importance to assess brain's computational ability and for neurorehabilitation projects that require real-time monitoring of neurons and concomitant networks activities. Currently, that information could be extracted from functional MRI when combined with mathematical models. Novel methods enabling quantitative and long-lasting recording at both single cell and network levels will allow to correlate the MRI data with intracortical activity at single cell level, and to refine those models. Here, we report the fabrication and validation of ultra-thin, optically transparent and flexible intracortical microelectrode arrays for combining extracellular multi-unit and fMRI recordings. The sensing devices are compatible with large-scale manufacturing, and demonstrate both fMRI transparency at 4.7 T, and high electrical performance, and thus appears as a promising candidate for simultaneous multiscale neurodynamic measurements

    A specific Gibberellin 20-oxidase dictates the flowering-runnering decision in diploid strawberry

    Get PDF
    Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato (Solanum tuberosum) and strawberry (Fragaria spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown. Here, we show that the stolon deficiency trait of the runnerless (r) natural mutant in woodland diploid strawberry (Fragaria vesca) is due to a deletion in the active site of a gibberellin 20-oxidase (GA20ox) gene, which is expressed primarily in the axillary meristem dome and primordia and in developing stolons. This mutation, which is found in all r mutants, goes back more than three centuries. When FveGA20ox4 is mutated, axillary meristems remain dormant or produce secondary shoots terminated by inflorescences, thus increasing the number of inflorescences in the plant. The application of bioactive gibberellin (GA) restored the runnering phenotype in the r mutant, indicating that GA biosynthesis in the axillary meristem is essential for inducing stolon differentiation. The possibility of regulating the runnering-flowering decision in strawberry via FveGA20ox4 provides a path for improving productivity in strawberry by controlling the trade-off between sexual reproduction and vegetative propagation

    Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing

    Get PDF
    The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping

    Tomato resources for functional genomics

    No full text
    Tomato is currently the model species for fleshy fruit development and for Solanaceae species. The recent completion of a high‐quality genome sequence of the inbred tomato (Solanum lycopersicum) cultivar ‘Heinz 1706’ allowed the prediction and in silico annotation of ca 35,000 genes. Assigning a biological function to these genes is among the priorities of the tomato community, especially for genes contributing to fleshy fruit development and quality, and to other major agronomical traits in tomato and Solanaceae. More than a decade of research using genomic tools, mostly transcriptome and metabolome, combined with genetic mapping approaches, provided first cues on the possible function of tomato genes by describing where, when, and with which other gene/metabolite these genes are expressed. Current advances in sequencing technologies now allow the exhaustive inventory of tomato transcripts in various plant organs, tissues and even cell types. To cope with the need to assign biological functions to a large number of genes, tomato mutant resources based on several technologies [T‐DNA and transposon insertional mutants, fast‐neutron, γ‐ray and ethyl methanesulfonate (EMS) mutants] have been developed in the recent years. Among them, the Targeting Induced Local Lesions In Genomes (TILLING) technology, based on the generation by EMS of high density point mutations evenly distributed in the genome and on the subsequent detection of mutations in target genes is presently the most established. The present chapter will describe the main resources, strategies and tools currently available for linking genes to phenotype in tomato
    • 

    corecore