111 research outputs found

    Soil Particles and Phenanthrene Interact in Defining the Metabolic Profile of Pseudomonas putida G7: A Vibrational Spectroscopy Approach

    Get PDF
    In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to β-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils

    Using plant litter decomposition as an indicator of ecosystem response to soil contamination

    Get PDF
    The inventory and remediation of contaminated sites have emerged as top environmental priorities worldwide. A large body of evidence has accumulated to show how soil contamination affects biological communities and ecological processes. This knowledge has yet to be used for the development of indicators of soil quality that are meaningful to end-users and are easy to implement in soil quality assessment schemes. In this study, we used quantifiable measures of litter decomposition, a key biophysical process, as indicators of the ecological impact of soil contamination by trace metals and hydrocarbons. We conducted a litterbag experiment with coarse and fine mesh bags to compare highly vs. minimally contaminated sites within eight locations representative of a wide array of environmental conditions and types of pollution. Contrary to the common assumption that soil contamination hampers soil functions, idiosyncratic responses were detected for litter decomposition rate and decomposer activity metrics. A negative relationship between detritivore and microbial responses to soil contamination indicates that wherever the activity of one group of decomposers is reduced, increase in activity of the other group may ensure litter decomposition to proceed at rate similar or higher than baseline rate. This finding may indicate that compensatory dynamics in soil communities is important in determining ecosystem stability against chemical stressors. As litter decomposition may inform on the capacity of terrestrial ecosystems to cope with soil contamination, it may be a useful complement to chemical soil analyses in routine soil quality assessment schemes

    DNA Stable Isotope Probing to investigate PAH−degrading bacteria in soil and rhizosphere

    No full text
    International audienc

    Le charme discret... de la racine

    No full text
    corecore