2,085 research outputs found

    The Higgs decay rate to two photons in a model with two fermiophobic-Higgs doublets

    Full text link
    We consider a three Higgs doublet model with an S3S_3 symmetry in which beside the SM-like doublet there are two fermiophobic doublets. Due to the new charged scalars there is an enhancement in the two-photon decay while the other channels have the same decay widths that the SM neutral Higgs. The fermiophobic scalars are mass degenerated unless soft terms breaking the S3S_3 symmetry are added.Comment: typos were corrected, the figures have been modified and the conclusions were increased. Still contains 15 pages, 2 figure

    Reporte de formación complementaria en área de concentración en diseño electrónico de alta frecuencia

    Get PDF
    The document contains 3 projects that were developed followed by the concentration area of The High-Frequency Design of Electronics Circuits. These projects were: The 1st project is the Band-stop filter with a microstrip line, developed during the subject of High-Frequency Electronics Design. The 2nd project is the Modeling a strain gauge and conditioning circuit for a Natural Vacuum leak detection system. Developed during the subject Methods of Simulation of Electronic Circuits. The 3rd project is the Output capacitor optimization for a Low voltage Drop-Out (LDO) regulator using the space mapping method. Developed during the subject Modeling and Design of Circuits Based on Optimization

    Microtremor response of a mass movement in Federal District of Brazil

    Get PDF
    The present study provides a brief description of the ambient noise recorded at a slow moving mass movement in Ribeirão Contagem Basin. The area is an interesting natural laboratory as river detachment processes in a number of different stages can be identified and are easily accessible. We investigate the site dynamic characteristics of the study area by recording ambient noise time-series at nine points, using portable nine three-component short period seismometers. The time-series are processed to give both horizontal to vertical spectral ratio (HVSR) curves as well as time-frequency plots of noise power spectral density (SPD). The HVSR curves illustrate and quantify aspects of site resonance effects due to underlying geology. Probability density function (PDF) shows that noise level lies well between new high noise model (NHNM) and new lower noise model (NLNM) and their probabilities are higher above 2 Hz. HVSR curves present a uniform lithologically controlled peak at 2 Hz. Directional properties of the wavefield are determined by beamforming method. The f-k analysis results in the E-W component show that at 5 Hz phase velocities are close to 1700 m/s while at 10 Hz dropped to 250 m/s. We observed that between 5 and 16 Hz the incoming wavefield arrive from 260 degrees. Further studies will apply a detailed noise analysis for the understanding of dynamics of the mass movement, which is triggered by the river erosion

    The geological history analysis of the friction angle in transported soils and their importance in the bearing capacity of shallow foundations

    Get PDF
    Este trabajo muestra el estudio de la variabilidad del ángulo de fricción con el análisis de la historia geológica y su influencia en la capacidad de carga de cimentaciones superficiales. Esto se realizó con la generación de campos aleatorios del ángulo de fricción por medio de la técnica de matriz de descomposición para una distribución lognormal autocorrelacionada. Adicionalmente, para recrear la historia geológica se crearon los campos aleatorios de forma anisotrópica por medio de la matriz de giro con ángulos de 0, 45 y 90 grados. Posteriormente estos campos aleatorios fueron implementados en un modelo de elementos finitos de una zapata continua. El modelo constitutivo usado fue un modelo lineal elástico con criterio de falla de Mohr Coulomb. Lo anterior, para el entender la influencia de la historia geológica y la variabilidad del ángulo de fricción en la capacidad de carga de cimentaciones superficiales. Como resultados se muestran los pesos de la variabilidad del ángulo de fricción en la capacidad de carga y la influencia del buzamiento de este ángulo fricción en la capacidad de carga.This work shows the variability of the friction angle based on the geological history, over the bearing capacity of shallow foundations. This study was developed through the generation of random fields of friction angle using the matrix decomposition technique for a self-correlated lognormal distribution. In addition, to recreate the geological history, the anisotropic random fields were created using the rotation matrix with angles of 0, 45 and 90 degrees. Subsequently, these random fields were implemented in a finite element model of a continuous footing. A linear elastoplastic constitutive model was selected to represent stress-strain soil behavior together with the Mohr-Coulomb failure criteria. This last work was done in order to understand the influence of geological history and the variability of the friction angle in the bearing capacity of shallow foundations. Results include the weight of the variability of the friction angle in the bearing capacity and the influence of the dip over the friction angle and the bearing capacity.Peer Reviewe

    Molecularly Imprinted Polymer Micro- and Nano-Particles. A review

    Get PDF
    In recent years, molecularly imprinted polymers (MIPs) have become an excellent solution to the selective and sensitive determination of target molecules in complex matrices where other similar and relative structural compounds could coexist. Although MIPs show the inherent properties of the polymers, including stability, robustness, and easy/cheap synthesis, some of their characteristics can be enhanced, or new functionalities can be obtained when nanoparticles are incorporated in their polymeric structure. The great variety of nanoparticles available significantly increase the possibility of finding the adequate design of nanostructured MIP for each analytical problem. Moreover, different structures (i.e., monolithic solids or MIPs micro/nanoparticles) can be produced depending on the used synthesis approach. This review aims to summarize and describe the most recent and innovative strategies since 2015, based on the combination of MIPs with nanoparticles. The role of the nanoparticles in the polymerization, as well as in the imprinting and adsorption efficiency, is also discussed through the review

    Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent

    Get PDF
    A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via - and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 g L�����1 in all cases and the inter-day precision was in the interval 7.4–15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%
    corecore