20 research outputs found

    Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples

    Get PDF
    Asthma is a complex and heterogeneous respiratory disorder characterized by chronic airway inflammation. It has generally been associated with allergic mechanisms related to type 2 airway inflammation. Nevertheless, between 10 and 33% of asthmatic individuals have nonallergic asthma (NA). Several targeted treatments are in clinical development for patients with Th2 immune response, but few biomarkers are been defined for low or non-Th2-mediated inflammation asthma. We have recently defined by gene expression a set of genes as potential biomarkers of NA, mainly associated with disease severity: IL10, MSR1, PHLDA1, SERPINB2, CHI3L1, IL8, and PI3. Here, we analyzed their protein expression and specificity using sera and isolated peripheral blood mononuclear cells (PBMCs). First, protein quantification was carried out using ELISA (in sera) or Western blot (proteins extracted from PBMCs by Trizol procedure), depending on the biomarker in 30 healthy controls (C) subjects and 30 NA patients. A receiver operating characteristic curve analysis was performed by using the R program to study the specificity and sensitivity of the candidate biomarkers at a gene- and protein expression level. Four kinds of comparisons were performed: total NA group vs C group, severe NA patients vs C, moderate–mild NA patients vs C, and severe NA patients vs moderate–mild NA patients. We found that all the single genes showed good sensitivity vs specificity for some phenotypic discrimination, with CHI3L1 and PI3 exhibiting the best results for C vs NA: CHI3L1 area under the curve (AUC) (CI 95%): 0.95 (0.84–1.00) and PI3 AUC: 0.99 (0.98–1.00); C vs severe NA: PI3 AUC: 1 (0.99–1.00); and C vs moderate–mild NA: CHI3L1 AUC: 1 (0.99–1.00) and PI3 AUC: 0.99 (0.96–1.00). However, the results for discriminating asthma disease and severity with protein expression were better when two or three biomarkers were combined. In conclusion, individual genes and combinations of proteins have been evaluated as reliable biomarkers for classifying NA subjects and their severity. These new panels could be good diagnostic tests

    Nonallergic asthma and its severity: Biomarkers for its discrimination in peripheral samples

    Full text link
    Asthma is a complex and heterogeneous respiratory disorder characterized by chronic airway inflammation. It has generally been associated with allergic mechanisms related to type 2 airway inflammation. Nevertheless, between 10 and 33% of asthmatic individuals have nonallergic asthma (NA). Several targeted treatments are in clinical development for patients with Th2 immune response, but few biomarkers are been defined for low or non-Th2-mediated inflammation asthma. We have recently defined by gene expression a set of genes as potential biomarkers of NA, mainly associated with disease severity: IL10, MSR1, PHLDA1, SERPINB2, CHI3L1, IL8, and PI3. Here, we analyzed their protein expression and specificity using sera and isolated peripheral blood mononuclear cells (PBMCs). First, protein quantification was carried out using ELISA (in sera) or Western blot (proteins extracted from PBMCs by Trizol procedure), depending on the biomarker in 30 healthy controls (C) subjects and 30 NA patients. A receiver operating characteristic curve analysis was performed by using the R program to study the specificity and sensitivity of the candidate biomarkers at a gene- and protein expression level. Four kinds of comparisons were performed: total NA group vs C group, severe NA patients vs C, moderate-mild NA patients vs C, and severe NA patients vs moderate-mild NA patients. We found that all the single genes showed good sensitivity vs specificity for some phenotypic discrimination, with CHI3L1 and PI3 exhibiting the best results for C vs NA: CHI3L1 area under the curve (AUC) (CI 95%): 0.95 (0.84-1.00) and PI3 AUC: 0.99 (0.98-1.00); C vs severe NA: PI3 AUC: 1 (0.99-1.00); and C vs moderate-mild NA: CHI3L1 AUC: 1 (0.99-1.00) and PI3 AUC: 0.99 (0.96-1.00). However, the results for discriminating asthma disease and severity with protein expression were better when two or three biomarkers were combined. In conclusion, individual genes and combinations of proteins have been evaluated as reliable biomarkers for classifying NA subjects and their severity. These new panels could be good diagnostic tests.This work was supported in part by research grants supported in part by research grants PI13/01730 and PI17/01682, cofinanced by FEDER, CIBERES (ISCIII, 0013), and RETIC (RD09/0076/00101) from the Fondo de Investigación Sanitaria (Ministerio de Sanidad y Consumo, Spain). SB was supported by Fundación Conchita Rábago. DC was supported by a contract from Comunidad de Madrid (PEJD-2016/BMD-2682, Sistema de Garantía Juvenil), and LC-J was supported by a contract from MINECO (PEJ-2014-A-31609, Sistema de Garantía Juvenil), both cofinanced by Fondo Social Europeo (FSE) and Iniciativa de Empleo Juvenil (IEJ)

    Discriminatory Molecular Biomarkers of Allergic and Nonallergic Asthma and Its Severity

    Get PDF
    Asthma is a complex disease comprising various phenotypes and endotypes, all of which still need solid biomarkers for accurate classification. In a previous study, we defined specific genes related to asthma and respiratory allergy by studying the expression of 94 genes in a population composed of 4 groups of subjects: healthy control, nonallergic asthmatic, asthmatic allergic, and nonasthmatic allergic patients. An analysis of differential gene expression between controls and patients revealed a set of statistically relevant genes mainly associated with disease severity, i.e., CHI3L1, IL-8, IL-10, MSR1, PHLDA1, PI3, and SERPINB2. Here, we analyzed whether these genes and their proteins could be potential asthma biomarkers to distinguish between nonallergic asthmatic and asthmatic allergic subjects. Protein quantification was determined by ELISA (in serum) or Western blot (in protein extracted from peripheral blood mononuclear cells or PBMCs). Statistical analyses were performed by unpaired t-test using the Graph-Pad program. The sensitivity and specificity of the gene and protein expression of several candidate biomarkers in differentiating the two groups (and the severity subgroups) was performed by receiver operating characteristic (ROC) curve analysis using the R program. The ROC curve analysis determined single genes with good sensitivity and specificity for discriminating some of the phenotypes. However, interesting combinations of two or three protein biomarkers were found to distinguish the asthma disease and disease severity between the different phenotypes of this pathology using reproducible techniques in easy-to-obtain samples. Gene and protein panels formed by single biomarkers and biomarker combinations have been defined in easily obtainable samples and by standardized techniques. These panels could be useful for characterizing phenotypes of asthma, specifically when differentiating asthma severity

    Discriminatory molecular biomarkers of allergic and nonallergic asthma and its severity

    Full text link
    The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Asthma is a complex disease comprising various phenotypes and endotypes, all of which still need solid biomarkers for accurate classification. In a previous study, we defined specific genes related to asthma and respiratory allergy by studying the expression of 94 genes in a population composed of 4 groups of subjects: healthy control, nonallergic asthmatic, asthmatic allergic, and nonasthmatic allergic patients. An analysis of differential gene expression between controls and patients revealed a set of statistically relevant genes mainly associated with disease severity, i.e., CHI3L1, IL-8, IL-10, MSR1, PHLDA1, PI3, and SERPINB2. Here, we analyzed whether these genes and their proteins could be potential asthma biomarkers to distinguish between nonallergic asthmatic and asthmatic allergic subjects. Protein quantification was determined by ELISA (in serum) or Western blot (in protein extracted from peripheral blood mononuclear cells or PBMCs). Statistical analyses were performed by unpaired t-test using the Graph-Pad program. The sensitivity and specificity of the gene and protein expression of several candidate biomarkers in differentiating the two groups (and the severity subgroups) was performed by receiver operating characteristic (ROC) curve analysis using the R program. The ROC curve analysis determined single genes with good sensitivity and specificity for discriminating some of the phenotypes. However, interesting combinations of two or three protein biomarkers were found to distinguish the asthma disease and disease severity between the different phenotypes of this pathology using reproducible techniques in easy-to-obtain samples. Gene and protein panels formed by single biomarkers and biomarker combinations have been defined in easily obtainable samples and by standardized techniques. These panels could be useful for characterizing phenotypes of asthma, specifically when differentiating asthma severity.Supported in part by research grants PI13/01730 and PI17/01682, cofinanced by FEDER, CIBERES (ISCIII, 0013), and RETIC (RD09/0076/00101) from the Fondo de Investigación Sanitaria (Ministerio de Sanidad y Consumo, Spain). SB was supported by a grant from the Fundación Conchita Rábago and PI17/01682. DC was supported by a contract from Madrid regional government (PEJD-2016/BMD-2682, Sistema de Garantía Juvenil), LC-J was supported by a contract from MINECO (PEJ-2014-A- 31609, Sistema de Garantía Juvenil), and MdP was supported by a contract from Madrid regional government (PEJ-2017- AI/SAL-5938, Sistema de Garantía Juvenil), all cofinanced by The European Social Fund (ESF) and the Youth Employment Initiative (YEI

    Therapeutic potential of peptides from Ole e 1 in olive-pollen allergy

    Full text link
    Olive-pollen allergy is one of the leading causes of respiratory allergy in Mediterranean countries and some areas of North America. Currently, allergen-specific immunotherapy is the only etiophatogenic treatment. However, this approach is not fully optimal, safe, or effective. Thus, efforts continue in the search for novel immunotherapy strategies, being one of the most promising the use of peptides derived from major allergens. This work tries to determine the therapeutic potential and safety of 5 dodecapeptides derived from the main allergen of olive-pollen allergy, Ole e 1. The immunomodulatory capacity of these peptides was studied using peripheral blood mononuclear cells (PBMCs) obtained from 19 olive-pollen-allergic patients and 10 healthy controls. We determined the capacity of these peptides to inhibit the proliferative response toward olive-pollen allergenic extract and to induce the regulatory cytokines, IL-10 and IL-35. To test the safety and absence of allergenicity of the peptides, the basophil activation was analyzed by flow-cytometry, using peripheral blood. The results showed that two of five peptides inhibited near to 30% the proliferative response against the total olive-pollen allergenic extract in olive-pollen-allergic patients. Inhibition increased to nearly 35% when the 5 peptides were used in combination. In both cases, a statistically significant induction of IL-10 and IL-35 secretion was observed in the supernatants of allergic patients PBMCs cultures. None of the 5 peptides induced basophil activation and cross-link inflammatory cell-bound IgE. In conclusion, these results open up new possibilities in the treatment of olive-pollen allergy, which could solve some of the problems facing current therapy approachesSupported by research grants PI13/01730, PI17/01682 cofinanced by FEDER, CIBERES (ISCIII, 0013), and RETIC (RD09/0076/00101) from the Fondo de Investigación Sanitaria (Ministerio de Sanidad y Consumo, Spain). D. Calzada was supported by a contract from Comunidad de Madrid (PEJD-2016/BMD- 2682, Sistema de Garantía Juvenil), L. Cremades-Jimeno was supported by a contract from MINECO (PEJ-2014-A-31609, Sistema de Garantía Juvenil) and MA. de Pedro was supported by a contract from Comunidad de Madrid (PEJ-2017-AI/SAL-5938, Sistema de Garantía Juvenil), all cofinanced by Fondo Social Europeo (FSE) and Iniciativa de Empleo Juvenil (IEJ). S. Baos was supported by Fundación Conchita Rábago and PI17/01682

    How reliably can algorithms identify eosinophilic asthma phenotypes using non-invasive biomarkers?

    Full text link
    Asthma is a heterogeneous respiratory disease that encompasses different inflammatory and functional endophenotypes. Many non-invasive biomarkers has been investigated to its pathobiology. Heany et al proposed a clinical algorithm that classifies severe asthmatic patients into likely-eosinophilic phenotypes, based on accessible biomarkers: PBE, current treatment, FeNO, presence of nasal polyps (NP) and age of onset.We assessed the concordance between the algorithm proposed by Heany et al. with sputum examination, the gold standard, in 145 asthmatic patients of the MEGA cohort with varying grades of severity.No correlation was found between both classifications 0.025 (CI = 0.013-0.037). Moreover, no relationship was found between sputum eosinophilia and peripheral blood eosinophilia count in the total studied population.In conclusion, our results suggest that grouping the biomarkers proposed by Heany et al. are insufficient to diagnose eosinophilic phenotypes in asthmatic patients. Sputum analysis remains the gold standard to assess airway inflammation.© 2022 The Authors. Clinical and Translational Allergy published by John Wiley & Sons Ltd on behalf of European Academy of Allergy and Clinical Immunology

    ADAM10 gene variants in AD patients and their relationship to CSF protein levels

    Get PDF
    This article belongs to the Special Issue Advances in the Research of Alzheimer's Disease: From Molecular Basis to Therapy.ADAM10 is the main α-secretase acting in the non-amyloidogenic processing of APP. We hypothesized that certain rare ADAM10 variants could increase the risk for AD by conferring the age-related downregulation of α-secretase. The ADAM10 gene was sequenced in 103 AD cases (82% familial) and 96 cognitively preserved nonagenarians. We examined rare variants (MAF < 0.01) and determined their potential association in the AD group with lower CSF protein levels, as analyzed by means of ELISA, and Western blot (species of 50 kDa, 55 kDa, and 80 kDa). Rare variants were found in 15.5% of AD cases (23% early-onset, 8% late-onset) and in 12.5% of nonagenarians, and some were group-specific. All were intronic variants except Q170H, found in three AD cases and one nonagenarian. The 3′UTR rs74016945 (MAF = 0.01) was found in 6% of the nonagenarians (OR 0.146, p = 0.057). Altogether, ADAM10 total levels or specific species were not significantly different when comparing AD with controls or carriers of rare variants versus non-carriers (except a Q170H carrier exhibiting low levels of all species), and did not differ according to the age at onset or APOE genotype. We conclude that ADAM10 exonic variants are uncommon in AD cases, and the presence of rare intronic variants (more frequent in early-onset cases) is not associated with decreased protein levels in CSF.This work was supported by grants from Instituto de Salud Carlos III (PI20/00469); Ayuda a Neurociencias de la Fundación Tatiana Pérez de Guzmán el Bueno (4564/006); FEDER funds, Spain; and a grant from Direcció General d’Universitat, Investigació i Ciència, GVA (AICO/2018/090). A.G-G is supported by a GVA-Predoctoral fellowship (grant CIACIF/2021/426) from Generalitat Valenciana, Spain.Peer reviewe

    Peptide Allergen Immunotherapy: A New Perspective in Olive-Pollen Allergy

    No full text
    Allergic diseases are highly prevalent disorders, mainly in industrialized countries where they constitute a high global health problem. Allergy is defined as an immune response “shifted toward a type 2 inflammation” induced by the interaction between the antigen (allergen) and IgE antibodies bound to mast cells and basophils that induce the release of inflammatory mediators that cause the clinical symptoms. Currently, allergen-specific immunotherapy (AIT) is the only treatment able to change the course of these diseases, modifying the type 2 inflammatory response by an allergenic tolerance, where the implication of T regulatory (Treg) cells is considered essential. The pollen of the olive tree is one of the most prevalent causes of respiratory allergic diseases in Mediterranean countries, inducing mainly nasal and conjunctival symptoms, although, in areas with a high antigenic load, olive-tree pollen may cause asthma exacerbation. Classically, olive-pollen allergy treatment has been based on specific immunotherapy using whole-olive pollen extracts. Despite extracts standardization, the effectiveness of this strategy varies widely, therefore there is a need for more effective AIT approaches. One of the most attractive is the use of synthetic peptides representing the B- or T-cell epitopes of the main allergens. This review summarizes experimental evidence of several T-cell epitopes derived from the Ole e 1 sequence to modulate the response to olive pollen in vitro, associated with several possible mechanisms that these peptides could be inducing, showing their usefulness as a safe preventive tool for these complex diseases
    corecore