4 research outputs found

    3D printed energy harvesters for railway bridges-Design optimisation

    Get PDF
    This paper investigates the optimal design of 3D printed energy harvesters for railway bridges. The type of harvester studied is a cantilever bimorph beam with a mass at the tip and a load resistance. These parameters are adjusted to find the optimal design that tunes the harvester to the fundamental frequency of the bridge. An analytical model based on a variational formulation to represent the electromechanical behaviour of the device is presented. The optimisation problem is solved using a genetic algorithm with constraints of geometry and structural integrity. The proposed procedure is implemented in the design and manufacture of an energy harvesting device for a railway bridge on an in-service high-speed line. To do so, first the methodology is validated experimentally under laboratory conditions and shown to offer strong performance. Next the in-situ railway bridge is instrumented using accelerometers and the results used to evaluate energy harvesting performance. The results show the energy harvested in a time window of three and a half hours (20 train passages) is E = 109.32mJ. The proposed methodology is particularly useful for bridges with fundamental mode shapes above 4.5Hz, however optimal design curves are also presented for the most common railway bridges found in practice. A novelty of this work is the use of additive manufacturing to 3D print energy harvesters, thus maximising design flexibility and energy performance

    Assembling the Dead, Gathering the Living: Radiocarbon Dating and Bayesian Modelling for Copper Age Valencina de la Concepción (Seville, Spain)

    Get PDF
    The great site of Valencina de la Concepción, near Seville in the lower Guadalquivir valley of southwest Spain, is presented in the context of debate about the nature of Copper Age society in southern Iberia as a whole. Many aspects of the layout, use, character and development of Valencina remain unclear, just as there are major unresolved questions about the kind of society represented there and in southern Iberia, from the late fourth to the late third millennium cal BC. This paper discusses 178 radiocarbon dates, from 17 excavated sectors within the c. 450 ha site, making it the best dated in later Iberian prehistory as a whole. Dates are modelled in a Bayesian statistical framework. The resulting formal date estimates provide the basis for both a new epistemological approach to the site and a much more detailed narrative of its development than previously available. Beginning in the 32nd century cal BC, a long-lasting tradition of simple, mainly collective and often successive burial was established at the site. Mud-vaulted tholoi appear to belong to the 29th or 28th centuries cal BC; large stone-vaulted tholoi such as La Pastora appear to date later in the sequence. There is plenty of evidence for a wide range of other activity, but no clear sign of permanent, large-scale residence or public buildings or spaces. Results in general support a model of increasingly competitive but ultimately unstable social relations, through various phases of emergence, social competition, display and hierarchisation, and eventual decline, over a period of c. 900 years

    Assembling the Dead, Gathering the Living: Radiocarbon Dating and Bayesian Modelling for Copper Age Valencina de la Concepción (Seville, Spain)

    No full text
    corecore