26 research outputs found
Mechanisms of seawater acclimation in a primitive, anadromous fish, the green sturgeon
Relatively little is known about salinity acclimation in the primitive groups of fishes. To test whether physiological preparative changes occur and to investigate the mechanisms of salinity acclimation, anadromous green sturgeon, Acipenser medirostris (Chondrostei) of three different ages (100, 170, and 533 dph) were acclimated for 7 weeks to three different salinities (<3, 10, and 33 ppt). Gill, kidney, pyloric caeca, and spiral intestine tissues were assayed for Na+, K+-ATPase activity; and gills were analyzed for mitochondria-rich cell (MRC) size, abundance, localization and Na+, K+-ATPase content. Kidneys were analyzed for Na+, K+-ATPase localization and the gastro-intestinal tract (GIT) was assessed for changes in ion and base content. Na+, K+-ATPase activities increased in the gills and decreased in the kidneys with increasing salinity. Gill MRCs increased in size and decreased in relative abundance with fish size/age. Gill MRC Na+, K+-ATPase content (e.g., ion-pumping capacity) was proportional to MRC size, indicating greater abilities to regulate ions with size/age. Developmental/ontogenetic changes were seen in the rapid increases in gill MRC size and lamellar length between 100 and 170 dph. Na+, K+-ATPase activities increased fourfold in the pyloric caeca in 33 ppt, presumably due to increased salt and water absorption as indicated by GIT fluids, solids, and ion concentrations. In contrast to teleosts, a greater proportion of base (HCO3− and 2CO32−) was found in intestinal precipitates than fluids. Green sturgeon osmo- and ionoregulate with similar mechanisms to more-derived teleosts, indicating the importance of these mechanisms during the evolution of fishes, although salinity acclimation may be more dependent on body size
Cytochrome c oxidase is regulated by modulations in protein expression and mitochondrial membrane phospholipid composition in estivating African lungfish
10.1152/ajpregu.90815.2008American Journal of Physiology - Regulatory Integrative and Comparative Physiology2983R608-R616AJPR
Should I stay or should I go? The Ectodysplasin locus is associated with behavioural differences in threespine stickleback
Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments
Roles of three branchial Na +-K +-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus
10.1152/ajpregu.00618.2011American Journal of Physiology - Regulatory Integrative and Comparative Physiology3031R112-R125AJPR
Small Changes in Gene Expression of Targeted Osmoregulatory Genes When Exposing Marine and Freshwater Threespine Stickleback (Gasterosteus aculeatus) to Abrupt Salinity Transfers
Salinity is one of the key factors that affects metabolism, survival and distribution of fish species, as all fish osmoregulate and euryhaline fish maintain osmotic differences between their extracellular fluid and either freshwater or seawater. The threespine stickleback (Gasterosteus aculeatus) is a euryhaline species with populations in both marine and freshwater environments, where the physiological and genomic basis for salinity tolerance adaptation is not fully understood. Therefore, our main objective in this study was to investigate gene expression of three targeted osmoregulatory genes (Na+/K+-ATPase (ATPA13), cystic fibrosis transmembrane regulator (CFTR) and a voltage gated potassium channel gene (KCNH4) and one stress related heat shock protein gene (HSP70)) in gill tissue from marine and freshwater populations when exposed to non-native salinity for periods ranging from five minutes to three weeks. Overall, the targeted genes showed highly plastic expression profiles, in addition the expression of ATP1A3 was slightly higher in saltwater adapted fish and KCNH4 and HSP70 had slightly higher expression in freshwater. As no pronounced changes were observed in the expression profiles of the targeted genes, this indicates that the osmoregulatory apparatuses of both the marine and landlocked freshwater stickleback population have not been environmentally canalized, but are able to respond plastically to abrupt salinity challenges