2,185 research outputs found

    A non-Gaussian landscape

    Get PDF
    Primordial perturbations with wavelengths greater than the observable universe shift the effective background fields in our observable patch from their global averages over the inflating space. This leads to a landscape picture where the properties of our observable patch depend on its location and may significantly differ from the expectation values predicted by the underlying fundamental inflationary model. We show that if multiple fields are present during inflation, this may happen even if our horizon exit would be preceded by only a few e-foldings of inflation. Non-Gaussian statistics are especially affected: for example models of local non-Gaussianity predicting |f_NL|>> 10 over the entire inflating volume can have a probability up to a few tens of percent to generate a non-detectable bispectrum in our observable patch |fNL^{obs.}|<10. In this work we establish systematic connections between the observable local properties of primordial perturbations and the global properties of the inflating space which reflect the underlying high energy physics. We study in detail the implications of both a detection and non-detection of primordial non-Gaussianity by Planck, and discover novel ways of characterising the naturalness of different observational configurations

    Simultaneous stabilization and simultaneous pole placement by nonswitching dynamic compensation

    Get PDF
    The 'simultaneous stabilization problem' is defined and theorems are proposed for its solution. The problem consists in answering the question: given an r-tuple G sub 1(s), G sub r(s) of p x m proper transfer functions, does there exist a compensator K(s) such that the closed loop systems G sub 1(s) (I+K(s)G sub 1(s)) (-1), G sub r(s) (I+K(s) G sub r(s)) (-1) are (internally) stable. This question arises in reliability theory, where G sub 2(s), G sub r(s) represents a plant G sub 1(s) operating in various modes of failure and K(s) is a nonswitching stabilizing compensator. It is important in the stability analysis and design of a plant which can be switched into various operating modes. The simultaneous stabilization problem can also apply to the stabilization of a nonlinear system which is linearized at several equilibria. Conditions are defined for pole placement and the generalized Sylvestor matrix is discussed

    Global Climate Change and Catholic Responsibility: Facts and Faith Response

    Get PDF
    Citation: Braun G, Hellwig MK, Byrnes WM (2007) Global Climate Change and Catholic Responsibility: Facts and Faith Response. Journal of Catholic Social Thought 4(2): 373-401. Abstract: The scientific evidence is now overwhelming that human activity is causing the Earth’s atmosphere to grow hotter, which is leading to global climate change. If current rates of greenhouse gas (GHG) emissions continue, it is predicted that there will be dramatic changes, including flooding, more intense heat waves and storms, and an increase in disease. Indigenous peoples and the poor will be most severely affected, as will Earth’s wild animals and plants, a quarter of which could become extinct in fifty years. We urgently need to switch to renewable (non-GHG emitting) energy sources, and try to live in a simpler, more sustainable way. In this article, a renewable energy expert, a biochemist, and a theologian have come together to describe the situation in which we find ourselves, and present ideas for a solution that incorporates Catholic social teaching

    Inhomogeneous non-Gaussianity

    Get PDF
    We propose a method to probe higher-order correlators of the primordial density field through the inhomogeneity of local non-Gaussian parameters, such as f_NL, measured within smaller patches of the sky. Correlators between n-point functions measured in one patch of the sky and k-point functions measured in another patch depend upon the (n+k)-point functions over the entire sky. The inhomogeneity of non-Gaussian parameters may be a feasible way to detect or constrain higher-order correlators in local models of non-Gaussianity, as well as to distinguish between single and multiple-source scenarios for generating the primordial density perturbation, and more generally to probe the details of inflationary physics.Comment: 16 pages, 2 figures; v2: Minor changes and references added. Matches the published versio

    Scale-dependence of Non-Gaussianity in the Curvaton Model

    Full text link
    We investigate the scale-dependence of f_NL in the self-interacting curvaton model. We show that the scale-dependence, encoded in the spectral index n_{f_NL}, can be observable by future cosmic microwave background observations, such as CMBpol, in a significant part of the parameter space of the model. We point out that together with information about the trispectrum g_NL, the self-interacting curvaton model parameters could be completely fixed by observations. We also discuss the scale-dependence of g_NL and its implications for the curvaton model, arguing that it could provide a complementary probe in cases where the theoretical value of n_{f_NL} is below observational sensitivity.Comment: 14 pages, 5 figures, Eq.(10) correcte

    Scale-dependent non-Gaussianity probes inflationary physics

    Full text link
    We calculate the scale dependence of the bispectrum and trispectrum in (quasi) local models of non-Gaussian primordial density perturbations, and characterize this scale dependence in terms of new observable parameters. They can help to discriminate between models of inflation, since they are sensitive to properties of the inflationary physics that are not probed by the standard observables. We find consistency relations between these parameters in certain classes of models. We apply our results to a scenario of modulated reheating, showing that the scale dependence of non-Gaussianity can be significant. We also discuss the scale dependence of the bispectrum and trispectrum, in cases where one varies the shape as well as the overall scale of the figure under consideration. We conclude providing a formulation of the curvature perturbation in real space, which generalises the standard local form by dropping the assumption that f_NL and g_NL are constants.Comment: 27 pages, 2 figures. v2: Minor changes to match the published versio

    Through the Eyes of the Novice Teacher: Perceptions of Mentoring Support

    Get PDF
    This study examined the perceptions of elementary school beginning teachers (n = 136) across a Rocky Mountain state in the US regarding the mentoring support they received during their first year teaching. Beginning teachers were asked to report the types of mentoring support they received and to rate the helpfulness of this support on the Mentoring Support Survey. Individual item scores and scale scores are reported. An analysis of variance was then used to compare the scale scores of teachers with the administrator-facilitated mentoring supports of common planning time with their mentors and/or release time to observe other teachers. Results indicate that beginning teachers who received both common planning time with a mentor and release time to observe other teachers rated the mentoring experiences they had as significantly more helpful than beginning teachers who were not provided these mentoring supports. Of the two, provision of common planning time was the most important type of administrator-facilitated support

    Interactive digital signal processor

    Get PDF
    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Large non-Gaussianity from two-component hybrid inflation

    Full text link
    We study the generation of non-Gaussianity in models of hybrid inflation with two inflaton fields, (2-brid inflation). We analyse the region in the parameter and the initial condition space where a large non-Gaussianity may be generated during slow-roll inflation which is generally characterised by a large f_NL, tau_NL and a small g_NL. For certain parameter values we can satisfy tau_NL>>f_NL^2. The bispectrum is of the local type but may have a significant scale dependence. We show that the loop corrections to the power spectrum and bispectrum are suppressed during inflation, if one assume that the fields follow a classical background trajectory. We also include the effect of the waterfall field, which can lead to a significant change in the observables after the waterfall field is destabilised, depending on the couplings between the waterfall and inflaton fields.Comment: 16 pages, 6 figures; v2: comments and references added, typos corrected, matches published versio
    corecore