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1. INTRODUCTION AND STATMENT OF THE MAUI RESULTS

The "simultaneous stabilization problem" - in either discrete or

continuous time - consists in answering the following question:

Given an r-tuple Gl(s),...,Gr(a) of p X m proper transfer

functions, does there exist a compensator K(s) such that the closed-

loop systems G1 (s)(I + K(s)G1(s))-1,...,Gr(s)(I + K(s)Gr(s))-1 are

(internally) stable.?

As pointed out in 1131, this question arises in reliability theory,

where G2(s),...,Gr(s) represents a plant G 1 (s) operating in various

modes of failure and K(s) is a nonswitching stabilizing compensator.

Of course, for the same reason, it is important in the stability analysis

and design of a plant which can be switched into various operating modes.

The simultaneous stabilization problem can also apply to the stabilization

of a nonlinear system which has been linearized at several equilibria.

Finally, it has been shown 1141, 1201 that to solve the case r -2 is

to solve the well-known problem considered by Youla et al in 1211: When

can a single plant be stabilized by a stable compensator? This corres-

pondence also serves to give some measure of the relative depth of this

problem.

In order to describe the results obtained via this correspondence,

we need some notation. First, set ni - McMillan degree of Gi(a). In

the scalar input-output2+i 	 setting (m- p- 1), we regard each G i(s) as a

point in R	 , viz. if

Gi (s) - pi(s)/qi(a), where

n	 n -1 n
pi (s) - soi + ... + an is i , and qi (s) - bli +...+b ni 8 i + s i

i
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than G
I
 (a)corresponds to the vector '( o i ,.,.,an i,bli,...,b ) R 

1+l.
i

Moreover, since pi and qi r +relatively prime, this vector Use

in the open dense set Rat(ni) c R i (see [ 3l for the strictly

proper case). in [14], Seeks and Murray used the techniques of frattiamal

representations [ 8j and the correspondence mentioned above to give

explicit inequalities dEfining the open set

U c Rat(n1) x Rat(n2)

of pairs (G1(s),G2(s)) which are simultaneously stabilizable. In

[20] Vidyasagar and Viswanadham showed, using similar techniques, that

provided max(m,p) > 1 the open set U of pairs (G1(s),G2(s)) which

can be stabilized is in fact dense.

This can be made precise by topologizing a point Gi (s) in the set

Mn = {p xm Gi (s) ; degree Gi (s) -ni}
.P

(ni+1)(mp)
as a vector in R	 via its Hankel parameters: If

CO

Gi(a) _ I Hijs-j
j=0

then Gi (a) corresponds to the n + 1 p x m block matrices ("10'" ''Hi n+1)

which determines G(s). It is known that
n
	is an (n(m + p) + mp)-manifold

(see [ 71,1121, [5]), although this is not important here. What is
important is that 

"m.P 
is a topological space.

One of our main results concerns the generic stabilizability problem;

that is,

Question 1.1. Fix m,p,r, and ni . Is the set U of r-tuples

G(s),...,Gr(a) which can be simultaneously stabilized open and densel 

in 1ml 
x ... x 

jr ?.P	 .P

.
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It is also important to ask, for reasons of global robustness of

algorithms finding such a compensator, for compensators with a fixed

degree of complexity.

Question 1.2. Fix m,p,r, and ni . What is the minimal value of q

(if one exists) for which the set , Wq of r-tuples which can be simul-

taneously stabilized, by a compensator of degree L5 q, is open and dense

in
1
 X ... X ^mr ?

1m.P	 .p

It should be noted that, in the case r- 1, Question 1.2 is an

outstanding, unsolved, classical problem. In this paper, we prove:

Theorem 1.1. In either discrete or continuous time, a sufficient condi-

tion for generic simultaneous stabilizability is

max (m,p) :^ r	 (1.1)

Indeed, if (1.1) holds, then the generic r-tuple can be stabilized by

a compensator of degree less than or equal to q, where q satisfies:

r

q [max (m, p) +1 - r] 

^j 

I ni -max (m,p)	 (1.2)

i-1

In the case r - 1, it is unknown whether generic stabilizability

implies generic pole -assignability; that is, whether or not these

properties of m,n, and p are really different (see [ 4]). Perhaps

not surprisingly then, Theorem 1.1 follows from:



.

Theorem 1.2. A sufficient condition for generic simultaneous pole-

assignability is (1.1), where the compensator K(s) can be taken to

be of degree q satisfying (1.2).

Here, simultaneous pole- assignability means the assignability of

r sets of self-conjugate sets of numbers {ali t " ' ten +q,l ) C t.
i

In fact sharper bounds on q can be obtained (see [18], [111). Our

proof relies on the recent pole-placement techniques derived for r- 1

by P.K. Stevens in his thesis [18), which contains an improvement on

existing results in the literature, see also [ 9], [17]. We shall prove

Theorem 1.2 only in the strictly proper case; the proper case involves

more technical arguments from algebraic geometry which can be found in

[11]. We shall, however, give an independent proof of Theorem 1.1 in

the nonstrictly proper case, based on'the equivalence of generic stabili-

zability and existence of a solution to a generic "deadbeat control"

problem, which we can solve if (1.1) is satisfied. This argument

extends the argument given in [ 4) for the case r -1 and q- 0.

Note that if r- 1, then (1.1) is always satisfied in which case

(1.2) implies

Corollary 1.3. (Brasch-Pearson [ 2J). The generic p X m plant G(s)

of degree n can be stabilized by a compensator of order q, where q

satisfies

(q + 1) max (m,p)	 n	 (1.3)

If r - 2 and max(m,p) > 1, then (1.1) is again satisfied, so we

obtain rather easily:
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Corollary 1.4. (Vidyasagar-Viswanadham 1201). If r- 2 and max(m,p) > 1,

then the generic pair (G1(s),G2(a)) is simultaneously stabilizable.

Moreover, in this case we know an upper bound on the order of the

required compensator. For example, if a- p- 2, r- 2, than q can be

taken to satisfy

q ^t n  +n2 - 2

On the otber hand, in [201 the explicit conditions defining the closed

set

Tnl x 
1n2 - 

U
"m .P	 m31P

of pairs not simultaneously stabilizable were derived. Such conditions

can be derived from our proof, but instead we refer to 1101, where

Theorem 1.1 (excepting (1.2)) is proved by interpolation methods also

yielding a set of explicit conditions in the range r 9 max(m,p).

Finally, we prove that the condition (1.1) is sharp in the following

sense.

Theorem 1.5. If min(m,p) - 1, then for fixed m,p,r and n  the following

statements are equivalent for proper plants:

r
(i) q E N satisfis& q(max(m,p) + 1- r) + Z 1 ni;

i-1

(ii) the generic r-tuple G1(s),...,Gr) is simultaneously

stabilizable in discrete or continuous time by a compensator

of degree E q;

(iii) the generic r-tuple G1(s),...,Gr (a) is simultaneously

stabilizable in discrete or continuous time.
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In the strictly proper case it follows that (i)-(iii) is also

equivalent to generic simultaneous pole assignability. This holds in

the proper case as well, but requires a separate argument [11].

Corollary 1.6. If min(m,p)- 1 and r C, max(m,p) then the generic

r-tuple is simultaneously stabilizable by a compensator of order

precisely given by the least integer q satisfying (1.2).

As a further corollary, we obtain one of the results obtained by

Seeks and Murray in [ ], see also [15]:

Corollary 1.7. (Seeks-Murray). Suppose m- p- 1 and r- 2. Simultaneous

stabilizability is not a generic property.

We remark that these results hold also over the field C of

complex numbers - in particular, the complex analogue of Corollary 1.7

dispels a folklore conjecture concerning simultaneous stabilization

using compensators with complex coefficients.

Finally, over any field, the method of proof of Theorem 1.2 gives

linear equations for a compensator simultaneously placing r(n +q) poles

when the generic hypothesis is satisfied.

2. POLE PLACEMENT AND THE GENERALIZED SYLVESTOR MATRIX: A PROOF OF
THEOREM 1.2

In this section we proceed to prove Theorem 1.2. Note that

Theorem 1.1 and Corollaries 1.3 and 1.4 follow immediately in the

strictly proper case from this theorem. Without any loss of generality

we can assume that m 3 p, for, if K(s) stabilizes G t(a) then Kt(a)
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stabilises Gi(s).

Suppose, first of all, that p -1, so that we are given a set of

r, ' input 1 output plants of McMillan degree 9 n represented as
n k i	

ccn 
k i	

nc 
k	 I

Ii=0pli

s

	i=0p2is

	

, i:p m+p-1,i	
(2.1)

L

n k si	 n k si	 n
s

i-Opm+pi	 1-0 *+pi	 i-Op p'i

for k —1,2,...,4. A 1 input, m output, compensator of McMillan degree

9 q is represented as

si	 1 a si
1-0	 ,	 i-0 2i

i-0

am pis'	

i 
L 

0 

am+pisi

-

i

. ........... . i-Oap-1'is
(2.2)

i a 
pi 

i
i= 0	 s

Note that in ( 2.1) and (2.2) the coefficients phi V k and aji

has been defined up to a nonzero scale factor. Moreover, for a strictly

proper plant or compensator, p^ - 0, a jq = 0 V j - 1,... , m + p - 1; k - 1,...,r.
i

The associated return difference equation, det(I + K(s)Gk(s) - 0

is given by

ecp n k i	 i
nk (a) - L	 Z p is	 a is	 (2.3)

J-1 li=O j	 i-o j

V k - 1,2,...,r

A generic r-tupl.e of plants define a mapping X, via equation (2.3),

between the plant parameters and the coefficient of the return difference

polynomials given by

	

X : It(q+l) (m+p) ♦ ir (n+q+l )
	

(2.4)

where
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pop
n

X (A01' .. 6 9q) 	 (Ao....,q)	 PO	
pn

PO 	P

(2.5)

where

Ai - (a
li 

, a21 , ... , am+pi)	 (2.6)

1	 1	 r
Pli	 pli. .
	

Pli

1	 2	 r
Pi M P2i	 P21' .
	 P21	 (2.7)

.	 . .	 . .	 . .	 . . .	 . .	 .
...........

1	 2	 r
"i	

Pm+pi'	 Pm+pi

The matrix in the right hand side of (2.5) is classically known as

the generalized Sylvestor matrix and is of order (q +1) (m+p) X r(n +q +1).
For r - 1 its rank has been analyzed by Bitmead, Kailath, Kung in [ 1 ).

In particular, for a generic plant, it is known to have full rank. For

r ^i 1, we have the following:

Lemma 2.1. The generalised Sylvestor matrix is of full rank for a generic

r-tuple.

Proof: See Appendix I.



Lem 2.2. Assume min (m,p) • 1. A sufficient condition: for generic
pole assignment, for an r tuple of strictly proper plants by a proper

compensator is given by

r
(q+1)(m+p-r)	 I ni-r+l

i=1
(2.8)

Proof: We prove this Lemma assuming for notational convariance that

ni an V i 1,...,r and analyze the mapping X as defined by (2.4),

(2.5). Assume

a=+P.q -1	 pm+P.n 1 Y 
k • 1, ... ,r

and that the coefficient ofsn+q in all the r return difference

polynomials (2.3) has been normalized to 1.

Thus a sufficient condition for generic pole assignment is that X'

is onto. Here the mapping

X' : Ht(q+l)(m+p) - 1 ♦ JR(")

is given by

pO . . . . . p
n

PO. . . . Pn

X(AO.....Aq-lA# ) - (AO ,....A _ Aq )	 ••• P 	 p...
0^	 n

P; . . . . P^

where

Aq	 (alga2q,...,amt,p-lq)

and pi is obtained from p i by deleting its (m+p) th row.

(2.9)

(02.10)

^T_^a



By Lemin 2.1 the matrix in the right-hand side of (2.10) is of

full rank for a generic r-tuple of plants, and has the order

(q+l)(m+p-1) x r(n+q). Therefore, a sufficient condition for

generic pole placement is given by

(q+1)(m+p)-1 B r(n+q)	 (2.11)

which is same as (2.8) for n  an V i -1, ... ,r.

The proof of Theorem 1.2 now proceeds by a reduction to the case

min(m,p) - 1, which has been treated in Le=as 2.1-2.2. This procedure,

which is called "vectoring down", is adopted from the case r- 1,

studied in P.K. Stevens thesis [18].

Lemma 2.3. Given an r-tuple of p x m plants Gi (a) of degrees nit

each with distinct simple poles, there is an open dense set of 1 x p

vectors v E IRP such that vG I (a) has degree ni.

Proof: If r - 1, then we may expand G(s)

c
n R 

G(s) - iL l T

in a partial fraction expansion, where X  E ! and each Ri has rank I.

Now, the set U1 of real vectors v such that v% #0 is clearly open

and dense in	 MP . Defining U 2 ,...,Un similarly, set
n

V- ()U 
i*  

Thus, V is an open dense set of vectors with the required
i-1

property.

If r >1, one obtains, as above, sets V 19 004 9Vr in IRP having
n

an open dense intersection n Vi. 	 Q.E.D.
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I
Lassos 2.4. Given an r-tuple of p x 	 plants G

I
 (a)there exists a

constant gain output feedback k such that the closed loop system

Gi (s)(I + kGi (s)) -1 have distinct simple poles.

Proof: For r -1, the
has simple poles is the

is well known [ 2j that

and dense. Taking any

desired conclusion.

set V  of K such that the closed loop system

complement in i P of an algebraic set. it

this set is nonempty; therefore, W1 is open
r

K in the open dense set n W gives the

Q.E.A.

Thus, choosing any (v , K) E IRP x It7p we have a mapping from an

an open dense set

4)
(v,k)	

Im,p x ... x Cm . p	 Lm,1 x ... x Im,l

0Cv,k)(Gi (s))i.l • (vGi (s)(m + KGi (
s))-l)i-1

which is rational in the Hankel parameters (Hij ) of (Gi)• Applying

Lemmas 2.1-2.2 to the case min(m,p) - 1, i.e.	 Cn'l x... x'm,l'

gives - via composition with 0 - an open dense sat of 	 `m

^n x... x n	 which can be simultaneously pole -assigned.
m. p	`'m.p	 Q.E.D.

3. GENERIC STABILIZABILITY CONDITION OF AN r-TUPLE OF PROPER PLANTS
s

In this section we proceed to prove Theorem 1.1 independent of

Theorem 1.2. We first show that the following three statements are

equivalent.
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I. A generic r-tuple of proper plants is stabilisable with respect

to the open left half plane by a proper compensator of degree t q.

II. A generic r-tuple of proper plants is stabilisable with respect to

the interior of the unit disc, by a proper compensator of degree t q.

III. A generic r-tuple of proper plants is pole assignable at the

origin by a proper compensator of degree t q.

Ldmoa 3.1.	 I <-> II

Proof: Consider the conformal transformation

VS) - (s+1)/(s - 1)	 (3.1)

which maps the r-tuple of proper plants g l , g
29

...,gr onto the r-tuple

of proper plants gi, ... ,gr where gi(s) - gi (m(s)) except for the

algebraic set of plants satisfying - "g i (a) has a pole at s -1 for

some is 1,...,r". The proof now follows from the two facts.

1. m(s) maps the open left half plane onto the interior of the unit

disc.

2. The mapping

(gl....,gr) H- + 410 - 0 gr)

and its inverse, ma; the generic r-tuple of proper plants to the

generic r-tuple of proper plants.
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Proof: Sufficiency is clear and follows by an analagous argument of

Lemma 3.1 with ^ (s) - s + a, a > 0, a E IR .

To prove necessity, we have the following: For each r - 1,2,...

(shown easily by assuming statement II and considering O(s) - as, a >0,

a EIR). 3 an open dense set of Ur of r-tuple of plants for which

there exist a compensator of degree f q which places the poles in the

interior of the disc Dr of radius 1/r centered at the origin.

Consider the set

m

U - I t Ur
r-1

Clearly, U is a dense set by the Baire Category Theorem [13]. Since

the mapping X given by (2.4 is linear, it has a closed image. Moreover,

every r-tuple of plants in U admits a sequence of compensators which

places the poles arbitrary close to the origin. Since image of X is

closed, U is contained in a set V of all r-tuple of plants for which

there exists a compensator which places the poles at the origin. By

the Tarski [ 19]- Seidenberg [16] theory of elimination over IR, V is

indeed defined by union and/or intersection of sets given by polynomial

equations or inequations fa >0, fs - 0. Finally, since U is dense

in V, f s (U) - 0 -> f6 -0 so that V is defined by strict polynomial

inequalities. Hence V is open. Moreover, since U is dense, V is

also dense.

Lemma 3.3. For a generic r-tuple (r E m+p) of min(m,p) - 1 plants

III <-> (q+l(m+p-r) 3 r(n-1)+1
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Proof: The only nontrivial part is to prove sufficiency for the case

r(n+q) < (q+l)(m+p) < r(n+q+l)

(The other cases follow easily from the fact that the associated

Sylvestor's matrix is of full rank for a generic r-tuple.)

To prove sufficiency, for the above case we want to show that the

vector

(Oro .......... 0 . s i ts 2 ......... ar)

•-- r (n + q) --+	 r	 ►

indeed belongs to the image of X (defined by (2. 5 )) for some

8
1
#0, 1=1,...,r.

Partition the Sylvestor's matrix in (2.5 as [S 1S 2 ] where S 1 is

of order (q +1)(m +p) x r(n +q). Clearly we are solving the pair of

equations

[AO, .... Ag IS, = [0,...,0]	 (3.2)

[AO ,...,Ag IS2 = [sl,....sr]	 (3.3)

We claim that for a generic r-tuple of plants (3.2) has a solution for

a nonzero vector A for otherwise if A = 0 we have
q	 q

[AO , .... A
q—i

Is ,
 
= (0,...,0)	 (3.4)

where Si is of order q(m +P) x r(n +q) obtained by deleting the last

m +p rows of S1 . From (3.4) (AO , .... Aq-1 )	
0 since S1 is of full

rank generically. Thus the only solution of (3 2) is the zero vector

which is a contradiction since the kernel of S1 is at least of dimension

1. On the other hand, for A  00, for a generic r-tuple of plants

the right-hand side of (3.3) is a vector none of whose entries are zero.
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Theorem 1.1 then follows from Lemma 3.1, 3.2, 3.3 and the

vectoring down technique used in the proof of Theorem 1.2 in

Section 2.

4. PROOF OF THEOREM 1.5

To say there exists q E N satisfying (1.2) is to max(m,p) -1

Thus, (ii) follows from (i) by Theorem 1.1.

(ii) -> (iii) since (iii) is weaker than (ii).

By Lemma 3.1, in order to prove (iii) -> (1) it suffices to assume

that G1(s),...,Gr(s) are simultaneously stabilizable in continuous-

time.

Proposition 4.1. The generic (m + 1)-tuple of 1 x m proper continuous

time plants of degree n is not simultaneously stabilizable by a proper

compensator of finite (but not a priori bounded) degree.

Proof: Consider the domain of (simultaneous) stability

niC+q

- {(cil'" '' cln" '' cr,n )	 L c
i j s j has all roots in Dl}

r	 j-0

nl+q	 nr+q
and its convex hull S1(2) c IR	 x ... x a	 Clearly, a necessary

condition for generic simultaneous stabilizability is

image( X n ) n S2o?) # $,

for an open dense set of t1. Since
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r
r

SZ(5a) c {(cij)	
cij >0}

it will suffice to prove:

Lemma 4.2. If r- m +p, then there exists an open set of r-tuples

n such that image ( )(n) contains no vector with only positive entries.

We fix the value of q and construct the associated Sylvestor

matrix S. We claim that the open set E of plants defined by

E ^ {(PO' P1' ... ' Pn)IPO-1Pj V j -1,...,n has all the entries negative}

cannot be stabilized by a proper compensator of degree : q.

Suppose the above is not true, then there exist n EE, such that

image( X n ) n Q( g ) # 0

or in other words 3a^ai > 0 V i-1, r(n+q+l) and

(4.1)a S - a

has a solution. Writing S as

S ^ [S t 	 Sit)

whe re

PO P 1	 P
q

S, s 0	 PO ......	
q- 1

1

0 0	 PO

(4.2)

and P j - 0 for all j> n
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Equation (4.1) can be written as

	

a s ti ' 
S'

-1 S"] to a	 (4.3)

where S' -1 is given as follows

XD Xi	X 

S ,-1 =	
XO ...... 

Xq-1
....................

X0 j

where XO 
= P-1

X
r

-(Pl9P2, ...,Pr+1) Xr-1 = Xr+l V r -0,...,q-  1

o

X1

P
j 
= P-1P

1
	 j -1,...,q

The identity matrix of order (q + 1)(m + p) in (4.3) forces a' to have

all the entries positive. Moreover, since n E E,S'
-1 S" has all its

entries negative so that a'(S' -1 S") has all the entries negative which
is a contradiction since a is a positive vector.

Finally it is shown that E is not an empty set. For a fixed

PO PO choose the vector d to be so that PD-ld has all. its entries

negative. Let

•— m + p ---+



so that

(PO,P1,... ,Pn) E E

Q.B.D.

Remark: If image( X) is affine hyperplane, then the necessary condition

image( Xn) n Q(2) f o

of course is sufficient, i.e. implies

image( X n ) n 2' # o

This fact was used by Chen, together with

Lemma 4.3. (Chen [ 6 ]) If r. 1, Q(2) _ {(cl,...,cn) : c  > 0)

to give precise conditions for stabilizability in the case

r ! 1, q - 0, min(m,p) - 1, and max(m,p) s n- 1. This technique can be	
i

adapted in the cases r ^o 1 to give explicit conditions - in certain

cases - defining the open set of simultaneously stabilizable plants 	
3

when r >max(m,p), see [11].

Note that Corollary 1.6 now follows from our previous results on

the generic rank of the generalized Sylvestor matrix, while Corollary 1.7

follows either from Theorem 1.5 or Proposition 4.1.

Y
3
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APPENDIX I: PROOF OF LEMMA 2.1

The generalized Sylvestor matrix is co-ordinatized by r(n +1)(m +p)

parameters, and it is sufficient to show the existence of one principal

minor with nonvanishing determinant.

By reordering the rows and columns, the generalized Sylvestor matrix

can be written as

S - 1Ql ,Q2 ,...,
1m+p

I T 	 (1)

where

Qi = [Pil,P12"'" P irl	 (2)

k	 k	 k
pj0	 pjl ...... Pjn	

0

p( q +l)	 (3)
jk	 ...

0

	

	 k .'• k	 k
pj0 pjl ..... Pjn

No	 (n+q+1)- -ip

in the notation of (2.7). Moreover, each p jk is referred to as a

'block' of S.

Define a set M of matrices as follows: "m belongs to M

provided m is obtainable from one of the matrices p jk in (3)

either by deleting the first al columns or the last a2 rows

al , a
2 

)10. 11

Proposition A.1. Every element m of M has the property that there

exists a principal minor m  E M of m, a coordinate pm and an integer

*	 *jjm such that pm 
m 

is a summand in det mp where jm is the order

of the minor.
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Proof: Clear from the structure of pjk.

The following is an algorithm to construct a principal minor

with nonidentically-vanishing determinant.

Algorithm:

Set S S , Initialize	 0

1. Set ^-&+1.

2. Look at P11' Obtain the principal minor m of P ll , satisfying

Proposition 1. If there is more than one possible choice, choose

the one containing the first column. Define a^ -pm and j & -jm.

3. Delete the rows and columns corresponding to the coordinate p
m 

from

S. Renumber the blocks of the resulting matrix and call it S.

(Every block of S is to be identified as a minor of the correspond-

ing block in S obtained by row or column deletion.)

4. Do the same "delete" operation as in step 3 in S.

S. If S is empty, terminate. Otherwise go to 6.

6. Set k

Construct the principal minor p of S by choosing those elements

of S whose corresponding row and column has been deleted in Step 6.

Proposition A.2. During the execution of the above algorithm, S can

always be decomposed into blocks belonging to M.

Proof: Clearly S satisfies the above proposition, since each block

pjk belongs to M. Each iteration of the algorithm deletes either the
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first al columns of the first block column of S or the last a2

rows of the first block raw of S. The proposition thus follows from

the definition of M.

Proposition A.3. p constructed in Step 6 of the algorithm has a

nonidentically-vanishing determinant.

Proof: Wt prove the proposition by showing that det p has a summand
k

given by	 iiR a, in the rotation of the algorithm. This is clear,
i-1 th

however, by observing that in the 
n 	

iteration the matrix S has a

k j 
principal minor, the determinant of which has the summand II ai

iw ^
where k is defined in Step 6 of the algorithm.
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