154 research outputs found
The association of antiphospholipid antibodies with severe early-onset pre-eclampsia
Objective. To confirm the association of antiphospholipid antibodies with early onset of severe pre-eclampsia before 30 weeks' gestation.Study design. Thirty-four patients with diastolic blood pressure levels â„Â 110 mmHg and at least 2+ proteinuria before the 30th week of pregnancy were randomly chosen for inclusion in the study. Blood samples were taken for assessment of anticardiolipin antibodies (ACAs), lupus anticoagulant, syphilitic serology and antinuclear antibodies. Fifteen normal antenatal patients matched for age, parity and gestational age acted as control subjects.Results. Four of the 34 women (11,7%) in the study group had elevated levels of both ACAs and lupus anticoagulant, compared with none in the control group. This was not found to be statistically different.Conclusion. Given the low incidence of positive ACAs in early-onset severe pre-eclampsia it is unlikely that they are implicated in its pathogenesis. It is possible that they represent a small subset of patients with alternative or combined pathology
Implications of the Muon Anomalous Magnetic Moment for Supersymmetry
We re-examine the bounds on supersymmetric particle masses in light of the
E821 data on the muon anomalous magnetic moment. We confirm, extend and
supersede previous bounds. In particular we find (at one sigma) no lower limit
on tan(beta) or upper limit on the chargino mass implied by the data at
present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at
least one sparticle must be lighter than 345 to 440 GeV. However, the E821
central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV.
For tan(beta) < 10, the data indicates a high probability for direct discovery
of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
SUSY breaking mediation mechanisms and (g-2)_\mu, B -> X_s \gamma, B -> X_{s} l^+ l^- and B_s -> \mu^+ \mu^-
We show that there are qualitative differences in correlations among
, , and in various SUSY breaking mediation mechanisms: minimal supergravity
(mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), gaugino mediation
(MSB), weakly and strongly interacting string theories, and
brane models. After imposing the direct search limits on the Higgs boson and
SUSY particle search limits and branching ratio, we find all
the scenarios can accommodate the in the range of
(a few tens), and predict that the branching ratio for can differ from the standard model (SM) prediction by
but no more. On the other hand, the is sensitive to the
SUSY breaking mediation mechanisms through the pseudoscalar and stop masses
( and ), and the stop mixing angle. In the GMSB with a
small messenger number, the AMSB, the MSB and the noscale scenarios,
one finds that , which is
below the search limit at the Tevatron Run II. Only the mSUGRA or string
inspired models can generate a large branching ratio for this decay.Comment: 40 pages, 21 figures (to appear in JHEP
Upstream Solutions: Does the Supplemental Security Income Program Reduce Disability in the Elderly?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72843/1/j.1468-0009.2007.00512.x.pd
The evolution of language: a comparative review
For many years the evolution of language has been seen as a disreputable topic, mired in fanciful "just so stories" about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ââdescended larynxâ â of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
The Physical Processes of CME/ICME Evolution
As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
Antibodies against endogenous retroviruses promote lung cancer immunotherapy
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response
- âŠ