171 research outputs found

    Optimally combining dynamical decoupling and quantum error correction

    Full text link
    We show how dynamical decoupling (DD) and quantum error correction (QEC) can be optimally combined in the setting of fault tolerant quantum computing. To this end we identify the optimal generator set of DD sequences designed to protect quantum information encoded into stabilizer subspace or subsystem codes. This generator set, comprising the stabilizers and logical operators of the code, minimizes a natural cost function associated with the length of DD sequences. We prove that with the optimal generator set the restrictive local-bath assumption used in earlier work on hybrid DD-QEC schemes, can be significantly relaxed, thus bringing hybrid DD-QEC schemes, and their potentially considerable advantages, closer to realization.Comment: 6 pages, 1 figur

    A locus at 19q13.31 significantly reduces the <em>ApoE</em> Ξ΅4 risk for Alzheimer\u27s Disease in African Ancestry

    Get PDF
    Copyright: \ua9 2022 Rajabli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. African descent populations have a lower Alzheimer disease risk from ApoE Ξ΅4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE Ξ΅4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE Ξ΅4 allele and the SNP rs10423769_A allele, (Ξ² = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (Ξ² = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (Ξ² = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the β€œprotective” direction but failing to pass a 0.05 significance threshold (Ξ² = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE Ξ΅4/Ξ΅4 carriers lacking the A allele to 2.1 for ApoE Ξ΅4/Ξ΅4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE Ξ΅4 for developing Alzheimer disease. The mechanism of the interaction with ApoEΞ΅4 is not known but suggests a novel mechanism for reducing the risk for Ξ΅4 carriers opening the possibility for potential ancestry-specific therapeutic intervention

    Ethnic-Racial Socialization in Early Childhood: The Implications of Color-Consciousness and Colorblindness for Prejudice Development

    Get PDF
    This chapter outlines how early childhood teachers can bring children into conversations surrounding race and racism by drawing on literature on how parents of color discuss these topics. Although educators’ practices surrounding race and racism remain largely unexplored, decades of developmental psychological research indicate that parents of color engage in ethnic-racial socialization practices that are beneficial for children (Hughes et al., 2006). The established dimensions of parental ethnic-racial socialization include (1) cultural socialization, or teaching children about their ethnic heritage and instilling ethnic pride; (2) preparation for bias, or teaching children about racism and preparing them to face discrimination; (3) promotion of mistrust, or warning children about the need to distance themselves from other racial groups; and (4) egalitarianism, or emphasizing the similarities between and equality of all races (Hughes et al. 2006). One consideration to take into account from a developmental perspective is that children’s level of cognitive development impacts how they interpret messages about race. This chapter draws a link between parental ethnic-racial socialization and extends this body of work to school settings, with a focus on teachers. The ideologies of colorblindness and color-consciousness are discussed throughout

    Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair

    Get PDF
    Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase theta (Pol theta), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol theta contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol theta. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol theta can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol theta and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance

    Early identification of young children at risk for poor academic achievement: preliminary development of a parent-report prediction tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early school success is clearly related to later health. A prediction index that uses parent report to assess children's risk for poor academic achievement could potentially direct targeted service delivery to improve child outcomes.</p> <p>Methods</p> <p>We obtained risk factors through literature review and used the National Longitudinal Survey of Youth 1979 Child Files to examine the predictive associations of these factors with academic achievement scores.</p> <p>Results</p> <p>Twenty predictors were identified including four strong predictors (maternal education, child gender, family income, and low birth weight). Significantly, 12 predictors explained 17-24% of score variance.</p> <p>Conclusions</p> <p>Parent-reported factors provide predictive accuracy for academic achievement.</p

    Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a β€œmycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the β€œnon mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients

    From drugs to deprivation: a Bayesian framework for understanding models of psychosis

    Get PDF
    • …
    corecore