146 research outputs found
A Check-List Of The Mecoptera Of The World
All known species of recent Mecoptera are cataloguedreference is given to original descriptions; and known distributions are recorded. New names for two junior homonyms (Panorpa issiki = Panorpa acuta Issiki & Cheng, and Panorpa banksiana = Panorpa interrupta Banks) are included, and one new synonymy (Panorpa galloisi Miyake = Panorpa cornigera MacLachlan) is noted.Citamos de todas as espĂ©cies conhecidas de Mecoptera, com as citações bibliográficas originais e respectiva distribuição geográfica. Dados sobre a diversidade das famĂlias, gĂŞneros e espĂ©cies sĂŁo apresentados, bem como notadas duas homonĂmias e uma sinonĂmia
Recommended from our members
Convective-scale perturbation growth across the spectrum of convective regimes
Convection-permitting ensembles have led to improved forecasts of many atmospheric phenomena. However, to fully utilize these forecasts the dependence of predictability on synoptic conditions needs to be understood. In this study, convective regimes are diagnosed based on a convective timescale which identifies the degree to which convection is in equilibrium with the large-scale forcing. Six convective cases are examined in a convection-permitting ensemble constructed using the Met Office Unified Model. The
ensemble members were generated using small-amplitude buoyancy perturbations added into the boundary layer, which can be considered to represent turbulent fluctuations close to the gridscale. Perturbation growth is shown to occur on different scales with an order of magnitude difference between the regimes (O(1 km) for cases closer to non-equilibrium convection and O(10 km) for cases closer to equilibrium convection). This difference reflects the fact that cell locations are essentially random in the equilibrium events after the first 12 h of the forecast, indicating a more rapid upscale perturbation growth compared to the non-equilibrium events. Furthermore, large temporal
variability is exhibited in all perturbation growth diagnostics for the nonequilibrium regime. Two boundary condition driven cases are also considered and show similar characteristics to the non-equilibrium cases, implying that caution is needed to interpret the timescale when initiation is not within the domain. Further understanding of perturbation growth within the different regimes could lead to a better understanding of where ensemble design improvements can be made beyond increasing the model resolution and could improve interpretation of forecasts
Cold and heterogeneous T cell repertoire is associated with copy number aberrations and loss of immune genes in small-cell lung cancer
Small-cell lung cancer (SCLC) is speculated to harbor complex genomic intratumor heterogeneity (ITH) associated with high recurrence rate and suboptimal response to immunotherapy. Here, using multi-region whole exome/T cell receptor (TCR) sequencing as well as immunohistochemistry, we reveal a rather homogeneous mutational landscape but extremely cold and heterogeneous TCR repertoire in limited-stage SCLC tumors (LS-SCLCs). Compared to localized non-small cell lung cancers, LS-SCLCs have similar predicted neoantigen burden and genomic ITH, but significantly colder and more heterogeneous TCR repertoire associated with higher chromosomal copy number aberration (CNA) burden. Furthermore, copy number loss of IFN-Îł pathway genes is frequently observed and positively correlates with CNA burden. Higher mutational burden, higher T cell infiltration and positive PD-L1 expression are associated with longer overall survival (OS), while higher CNA burden is associated with shorter OS in patients with LS-SCLC
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Distribution of Corbicula fluminea (MĂĽller, 1774) in the invaded range: a geographic approach with notes on species traits variability
Corbicula fluminea is considered one of the
most important non-native invasive species (NIS) in
aquatic systems mainly due to its widespread distribution
and ecological and economic impacts. This species
is known to negatively affect native bivalves, also with
severe effects on biodiversity and ecosystem functioning.
Throughout an exhaustive bibliographic survey and
with the aid of Geographic Information Systems tools,
this study tracks the species dispersion from its native
range, including the description of important physical
and environmental barriers. Additional analyses were
conducted to examine possible influences of latitudinal/
temperature gradients on important traits (e.g. life span,
maximum and mean body length, growth at the end of
first year). Altitude and winter minimum temperature
appear to be delaying the invasion worldwide, but it
seems inevitable that the species will spread across the
globe. Latitude and summer temperature show a
relationship with growth and life span. Overall, the
information gathered in this review may be relevant to
forecast future distribution patterns of this NIS, and to
anticipate the possible implementation of effective
management measures. Moreover, it may constitute a
valuabletool inthe prediction of population responses to
an increasingly changing environment.This research was supported by FCT
(Portuguese Foundation for Science and Technology), through
a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a
post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012)
and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED
project (PTDC/MAR/111901/2009), subsidized by the
European Social Fund and MCTES (Ministério da Ciência,
Tecnologia e Ensino Superior) National Funds, through the
POPH (Human Potential Operational Programme), QREN
(National Strategic Reference Framework) and COMPETE
(Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio
Neoadjuvant Chemotherapy Plus Nivolumab With or Without Ipilimumab in Operable Non-small Cell Lung Cancer: The Phase 2 Platform NEOSTAR Trial
Neoadjuvant ipilimumab + nivolumab (Ipi+Nivo) and nivolumab + chemotherapy (Nivo+CT) induce greater pathologic response rates than CT alone in patients with operable non-small cell lung cancer (NSCLC). The impact of adding ipilimumab to neoadjuvant Nivo+CT is unknown. Here we report the results and correlates of two arms of the phase 2 platform NEOSTAR trial testing neoadjuvant Nivo+CT and Ipi+Nivo+CT with major pathologic response (MPR) as the primary endpoint. MPR rates were 32.1% (7/22, 80% confidence interval (CI) 18.7–43.1%) in the Nivo+CT arm and 50% (11/22, 80% CI 34.6–61.1%) in the Ipi+Nivo+CT arm; the primary endpoint was met in both arms. In patients without known tumor EGFR/ALK alterations, MPR rates were 41.2% (7/17) and 62.5% (10/16) in the Nivo+CT and Ipi+Nivo+CT groups, respectively. No new safety signals were observed in either arm. Single-cell sequencing and multi-platform immune profiling (exploratory endpoints) underscored immune cell populations and phenotypes, including effector memory CD8+ T, B and myeloid cells and markers of tertiary lymphoid structures, that were preferentially increased in the Ipi+Nivo+CT cohort. Baseline fecal microbiota in patients with MPR were enriched with beneficial taxa, such as Akkermansia, and displayed reduced abundance of pro-inflammatory and pathogenic microbes. Neoadjuvant Ipi+Nivo+CT enhances pathologic responses and warrants further study in operable NSCLC. (ClinicalTrials.gov registration: NCT03158129.
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin
Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies
- …