11 research outputs found

    Interacting fermions in two dimensions: beyond the perturbation theory

    Full text link
    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non-analytic, T2T^{2}-part of the specific heat.Comment: 5 pages, 4 figure

    Singular perturbation theory for interacting fermions in two dimensions

    Full text link
    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a non-perturbative effect: an interaction with the zero-sound mode. Resumming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T)∝T2C(T)\propto T^2. It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T)C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T)C(T). We also obtain a general form of the non-analytic term in C(T)C(T), valid for the case of a generic Fermi liquid, \emph{i.e.}, beyond the perturbation theory.Comment: 53 pages, 10 figure

    Dissolved organic matter degradation by sunlight coagulates organo-mineral colloids and produces low-molecular weight fraction of metals in boreal humic waters

    No full text
    International audiencePhotochemical degradation of dissolved organic matter (DOM) is recognized as the major driver of CO2 emission to the atmosphere from the inland waters of high latitudes. In contrast to numerous studies of photo-induced DOM transformation, the behavior of trace element (TE) during photodegradation of boreal DOM remains virtually unknown. Towards a better understanding of concentration, size fractionation and speciation change of DOM and TE in boreal waters subjected to solar radiation, we conducted on-site photo-degradation experiments in stream and bog water collected from a pristine zone of the Northern Karelia (Russian subarctic). The removal of Fe and Al occurred only in the bog water (90% and 50% respectively, over 5 days of reaction), whereas no detectable decrease of dissolved ( fraction was preferentially enriched in Fe, Al, Ca, Mg and other divalent metals relative to Corg. The climate warming leading to water temperature rise in the boreal zone will intensify the Fe and Al hydroxide coagulation while increasing the production of LMW organic ligands and free metals and metal - organic complexes

    Transformation of organo-ferric peat colloids by a heterotrophic bacterium

    No full text
    International audienceBacterial mineralization of allochthonous (soil) dissolved organic matter (DOM) in boreal waters governs the CO2 flux from the lakes and rivers to the atmosphere, which is one of the main factor of carbon balance in high latitudes. However, the fate of colloidal trace element (TE) during bacterial processing of DOM remains poorly constrained. We separated monoculture of Pseudomonas saponiphila from a boreal creek and allowed it to react with boreal Fe-rich peat leachate of approximate colloidal (3 kDa-0.45 ÎŒm) composition C1000Fe12Al3.3Mg2Ca3.7P1.2Mn0.1Ba0.5 in nutrient-free media. The total net decrease of Dissolved Organic Carbon (DOC) concentration over 4 day of exposure was within 5% of the initial value, whereas the low molecular weight fraction of Corg (LMW kDa) yielded a 16%-decrease due to long-term bio-uptake or coagulation. There was a relative depletion in Fe over Corg of 0.45 ÎŒm, colloidal and LMW fraction in the course of peat leachate interaction with P. saponiphila. Al, Mn, Ni, Cu, Ga, REEs, Y, U were mostly affected by bacterial presence and exhibited essentially the adsorption at the cell surface over first hours of reaction, in contrast to Fe, Ti, Zr, and Nb that showed both short-term adsorption and long-term removal by physical coagulation/coprecipitation with Fe hydroxide. The low molecular weight fraction (LMW kDa) of most TE was a factor of 2-5 less affected by microbial presence via adsorption or removal than the high molecular weight (HMW) colloidal fractions (<0.45 ÎŒm and <50 kDa). The climate change-induced acceleration of heterotrophic bacterial activity in boreal and subarctic waters may lead to preferential removal of Fe over DOC from conventionally dissolved fraction and the decrease of the proportion of LMW < 3 kDa fraction and the increase of HMW colloids. Enhanced heterotrophic mineralization of organo-ferric colloids under climate warming scenario may compensate for on-going "browning" of surface waters

    New Three-Finger Protein from Starfish Asteria rubens Shares Structure and Pharmacology with Human Brain Neuromodulator Lynx2

    No full text
    Three-finger proteins (TFPs) are small proteins with characteristic three-finger &beta;-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1&ndash;4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated &alpha;4&beta;2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and &alpha;4 and &alpha;7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish

    Discovery of a silicate rock-boring organism and macrobioerosion in fresh water

    No full text
    International audienceMacrobioerosion is a common process in marine ecosystems. Many types of rock-boring organisms break down hard substrates, particularly carbonate rocks and calcareous structures such as dead corals and shells. In paleontology, the presence of rocks with boreholes and fossil macroboring assemblage members is one of the primary diagnostic features of shallow marine paleo-environments. Here we describe a silicate rock-boring organism and an associated community in submerged siltstone rock outcrops in Kaladan River, Myanmar. The rock-boring mussel Lignopholas fluminalis is a close relative of the marine piddocks, and its borings belong to the ichnospecies Gastrochaenolites anauchen. The neotectonic uplift of the area leading to gradual decrease of the sea level with subsequent shift from estuarine to freshwater environment was the most likely driver for the origin of this community. Our findings highlight that rocks with macroborings are not an exclusive indicator of marine paleo-ecosystems, but may also reflect freshwater habitats

    Discovery of a silicate rock-boring organism and macrobioerosion in fresh water

    No full text
    Macrobioerosion is a common process in marine ecosystems. Many types of rock-boring organisms break down hard substrates, particularly carbonate rocks and calcareous structures such as dead corals and shells. In paleontology, the presence of rocks with boreholes and fossil macroboring assemblage members is one of the primary diagnostic features of shallow marine paleo-environments. Here we describe a silicate rock-boring organism and an associated community in submerged siltstone rock outcrops in Kaladan River, Myanmar. The rock-boring mussel Lignopholas fluminalis is a close relative of the marine piddocks, and its borings belong to the ichnospecies Gastrochaenolites anauchen. The neotectonic uplift of the area leading to gradual decrease of the sea level with subsequent shift from estuarine to freshwater environment was the most likely driver for the origin of this community. Our findings highlight that rocks with macroborings are not an exclusive indicator of marine paleo-ecosystems, but may also reflect freshwater habitats
    corecore