24 research outputs found

    Gas storage

    Get PDF
    International audienceThe continuous increase of energy demands based on fossil fuels in the last years have lead to an increase of greenhouse gases (GHG) emission which strongly contribute to global warming. The main strategies to limit this phenomenon are related to the efficient capture of these gases and to the development of renewable energies sources with limited environmental impact. Particularly, carbon dioxide (CO2) and methane (CH4) are the main constituents of greenhouse gases while hydrogen (H2) is considered an alternative clean energy source to fossil fuels. Therefore, tremendous research to store these gases has been reported by several approaches and among them the physisorption on activated carbons (AC) have received significant attention. Their abundance, low cost and tunable porous structure and chemical functionalities with an existing wide range of precursors that includes bio-wastes make them ideal candidates for gas applications. This chapter presents the recent developments on CH4, CO2 and H2 storage by activated carbons with focus on biomass as precursor materials. An analysis of the main carbon properties affecting the AC's adsorption capacity (i.e. specific surface area, pore size and surface chemistry) is discussed in detail herein

    Supercritical hydrothermal synthesis of silver nanoparticles, composites, and their characterizations

    Get PDF
    Silver nanoparticles (AgNPs) and silver nanoparticles doped activated carbon (AC-Ag) composite materials were synthesized by hydrothermal processes in supercritical water conditions (29 MPa and 400 °C) using batch reactor. We studied the influence of the precursor solution concentration, reaction temperature under the hydrothermal conditions, and synthesis time on the properties of synthesized materials. The properties of plain AgNPs and AC-Ag composite materials synthesized in supercritical water, including crystallinity, particle size, and molecular interactions between AC and Ag were investigated, comprehensively. Compared to the plain AgNPs, the activated carbon-supported Ag nanocomposite was synthesized faster due to the active functional groups of activated carbon. Furthermore, the FTIR results reveal that the silver nanoparticles are attached to the activated carbon surface in the presence of oxygen bonded carbonyl and carboxyl groups. The nano-sized metal silver particles were observed on the AC surface when analyzed by TEM and XRD. All results imply that the supercritical water condition allows the formation of silver particles less than 100 nm either in the form of plain particles or deposited on the activated carbon surface using the silver acetate precursor solution. This environmentally benign supercritical hydrothermal process can replace the conventional method and become a novel synthesis method for preparing various new materials

    Efficiency of KOH-activated carbon for removal of heavy metal pollution from water

    Get PDF
    The study to reduce heavy metals pollution from water using the KOH-activated carbon was studied the factors affecting the adsorption capacities of Cu(II) and Pb(II), in particular, initial metals concentration, pH of the solution, and contact time in static conditions. Using X-ray photoelectron spectroscopy and FTIR analysis to determine the elemental composition and surface functional groups of the activated carbon surface, the presence of oxygen-related functional groups was observed. The maximum adsorption capacities were 135.8 mg g-1 and 31.0 mg g-1 for removal of lead and copper solutions with the initial concentration of 300 mg L-1 of metal at 318 K, respectively. The removal percentage was found to be higher for Pb (II) when compared with Cu (II)

    Enhancing scientific transparency in national CO2 emissions reports via satellite-based a posteriori estimates

    No full text
    Abstract Biennial Update Reports (BURs) are essential requirements from the United Nations Framework Convention on Climate Change (UNFCCC). However, many non-Annex I countries have not submitted these reports due to difficulties in compiling the inventories. We developed a satellite-based method for the top-down inverse estimation of CO2 emissions using partial-column data in the lower troposphere obtained by the Greenhouse Gases Observing Satellite, adopted to validate the Mongolian 2nd BUR (BUR2) for the energy sector in 2018. The estimated CO2 emissions were only 1.5% higher than those reported in the BUR2; these were also very close (4.2% smaller) to estimates from the Emission Database for Global Atmospheric Research. Mongolia is the first country to introduce an independent inverse estimate in its BUR, thereby increasing scientific transparency. Our method could be applied into other countries and could be incorporated into UNFCCC reporting guidelines, significantly improving global CO2 emission estimates

    Climate Patterns Affecting Cold Season Air Pollution of Ulaanbaatar City, Mongolia

    No full text
    Many studies have been conducted on air pollution in Ulaanbaatar city. However, most have focused on the sources of pollutants and their characteristics and distribution. Although the location of the city subjects it to unavoidable natural conditions where air pollution accumulates during the cold season, nature-based solutions have not yet been considered in the projects implemented to mitigate air pollution levels. Therefore, this study aims to determine the combined influence of geography and atmospheric factors on cold season air pollution. The spatiotemporal variations in the variables were investigated using meteorological observation data from 1991 to 2020 in the different land-use areas. Then, atmospheric stagnation conditions and air pollution potential parameters were estimated from daily radiosonde data. Subsequently, the temporal variations in air pollutants were studied and correlated with estimates of the above parameters. In the Ulaanbaatar depression, the stable cold air lake (colder than −13.5 °C), windless (34–66% of all observations), and poor turbulent mixing conditions were formed under the near-surface temperature inversion layer in the cold season. Moreover, due to the mountain topography, the winds toward the city center from all sides cause polluted air to accumulate in the city center for long periods. Air pollution potential was categorized as very high and high (2·s−1), in the city in winter, indicating the worst air quality. Thus, further urban planning policy should consider these nature factors
    corecore