6 research outputs found

    Impact of the Coronavirus Disease (COVID-19) on the Mental Health and Physical Activity of Pharmacy Students at the University of Zambia: A Cross-Sectional Study.

    Get PDF
    BACKGROUND: The novel coronavirus disease (COVID-19) is a serious global health problem that has negatively impacted the mental health of students. METHODS: We conducted an online descriptive cross-sectional study among 273 undergraduate pharmacy students at the University of Zambia. A partial proportional odds regression model was used to determine the predictors of anxiety. All statistical tests were set at 95% confidence level (p<0.05). RESULTS: A response rate of 70% was obtained with the majority of the students being female 51.6%. Of the 273 respondents, 23.8% did not experience anxiety, 34.4% experienced mild anxiety, 24.9% experienced moderate anxiety while 16.9% experienced severe anxiety about COVID-19. It was also found that 61.2% of students reported that their attention to mental health increased during the COVID-19 pandemic whereas 44.3% reported an increased resting time with a significant reduction in relaxation 51.3% and physical activity 45.4% time. Factors that affected mental health included; reduced family care (OR: 2.27; 95% CI: 1.09-4.74), not changing attention to mental health (OR: 0.33; 95% CI: 0.18-0.62), being in the final year of study (OR: 0.33; 95% CI: 0.13-0.84), reduced time of resting (OR: 2.10; 95% CI: 1.26-3.50) and feeling helpless (OR: 0.42; 95% CI:0.23-0.75). CONCLUSION: COVID-19 negatively impacted the mental health and physical activity of pharmacy students at the University of Zambia. This can have negative health and academic outcomes for students going forward. Higher learning institutions and key stakeholders should implement measures to aid students to recover from the impact of COVID-19 on their mental health and physical activity

    Impact of the coronavirus disease on the mental health and physical activity of pharmacy students at the University of Zambia: a cross-sectional study

    Get PDF
    Background: The novel coronavirus disease (COVID-19) is a serious global health problem that has negatively impacted the mental health of students.Methods: We conducted an online descriptive cross-sectional study among 273 undergraduate pharmacy students at the University of Zambia from August to September 2020. A partial proportional odds regression model was used to determine the predictors of anxiety. All statistical tests were set at 95% confidence level (p<0.05).Results: A response rate of 70% was obtained with the majority of the students being female 51.6%. Of the 273 respondents, 23.8% did not experience anxiety, 34.4% experienced mild anxiety, 24.9% experienced moderate anxiety while 16.9% experienced severe anxiety about COVID-19. It was also found that 61.2% of students reported that their attention to mental health increased during the COVID-19 pandemic whereas 44.3% reported an increased resting time with a significant reduction in relaxation 51.3% and physical activity 45.4% time. Factors that affected mental health included; reduced family care (OR: 2.27; 95% CI: 1.09-4.74), not changing attention to mental health (OR: 0.33; 95% CI: 0.18-0.62), being in the final year of study (OR: 0.33; 95% CI: 0.13-0.84), reduced time of resting (OR: 2.10; 95% CI: 1.26-3.50) and feeling helpless (OR: 0.42; 95% CI:0.23-0.75).Conclusions: COVID-19 negatively impacted the mental health and physical activity of pharmacy students at the University of Zambia. This can have negative health and academic outcomes for students going forward. Higher learning institutions and key stakeholders should implement measures to aid students to recover from the impact of COVID-19 on their mental health and physical activity

    Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro

    No full text
    n vitro anti-plasmodial activity-guided fractionation of a diethyl ether extract of the liverwort species Marchantia polymorpha, collected in Iceland, led to isolation of the bisbibenzyl ether, marchantin A. The structure of marchantin A (1) was confirmed by NMR and HREIMS. Marchantin A inhibited proliferation of the Plasmodium falciparum strains, NF54 (IC50 = 3.41 μM) and K1 (IC50 = 2.02 μM) and showed activity against other protozoan species Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani with IC50 values 2.09, 14.90 and 1.59 μM, respectively. Marchantin A was tested against three recombinant enzymes (PfFabI, PfFabG and PfFabZ) of the PfFAS-II pathway of P. falciparum for malaria prophylactic potential and showed moderate inhibitory activity against PfFabZ (IC50 = 18.18 μM). In addition the cytotoxic effect of marchantin A was evaluated. This is the first report describing the inhibitory effects of the liverwort metabolite marchantin A against these parasites in vitro

    Design, Synthesis, Structural Characterization by IR, 1H, 13C, 15N, 2D-NMR, X-Ray Diffraction and Evaluation of a New Class of Phenylaminoacetic Acid Benzylidene Hydrazines as pfENR Inhibitors

    No full text
    Recent studies have revealed that plasmodial enoyl-ACP reductase (pfENR, FabI), one of the crucial enzymes in the plasmodial type II fatty acid synthesis II (FAS II) pathway, is a promising target for liver stage malaria infections. Hence, pfENR inhibitors have the potential to be used as causal malarial prophylactic agents. In this study, we report the design, synthesis, structural characterization and evaluation of a new class of pfENR inhibitors. The search for inhibitors began with a virtual screen of the iResearch database by molecular docking. Hits obtained from the virtual screen were ranked according to their Glide score. One hit was selected as a lead and modified to improve its binding to pfENR; from this, a series of phenylamino acetic acid benzylidene hydrazides were designed and synthesized. These molecules were thoroughly characterized by IR, (1) H, (13) C, (15) N, 2D-NMR (COSY, NOESY, (1) H-(13) C, (1) H-(15) N HSQC and HMBC), and X-ray diffraction. NMR studies revealed the existence of conformational/configurational isomers around the amide and imine functionalities. The major species in DMSO solution is the E, E form, which is in dynamic equilibrium with the Z, E isomer. In the solid state, the molecule has a completely extended conformation and forms helical structures that are stabilized by strong hydrogen bond interactions, forming a helical structure stabilized by N-H…O interactions, a feature unique to this class of compounds. Furthermore, detailed investigation of the NMR spectra indicated the presence of a minor impurity in most compounds. The structure of this impurity was deduced as an imidazoline-4-one derivative based on (1) H-(13) C and (1) H-(15) H HMBC spectra and was confirmed from the NOESY spectra. The molecules were screened for in vitro activity against recombinant pfENR enzyme by a spectrophotometric assay. Four molecules, viz. 17, 7, 10, and 12 were found to be active at 7, 8, 10, and 12 μm concentration, respectively, showing promising pfENR inhibitory potential. A classification model was derived based on a binary QSAR approach termed recursive partitioning (RP) to highlight structural characteristics that could be tuned to improve activity
    corecore