7 research outputs found

    Advanced cell therapies with and without scaffolds

    No full text
    PubMedID: 22162495Tissue engineering and regenerative medicine aim to produce tissue substitutes to restore lost functions of tissues and organs. This includes cell therapies, induction of tissue/organ regeneration by biologically active molecules, or transplantation of in vitro grown tissues. This review article discusses advanced cell therapies that make use of scaffolds and scaffold-free approaches. The first part of this article covers the basic characteristics of scaffolds, including characteristics of scaffold material, fabrication and surface functionalization, and their applications in the construction of hard (bone and cartilage) and soft (nerve, skin, blood vessel, heart muscle) tissue substitutes. In addition, cell sources as well as bioreactive agents, such as growth factors, that guide cell functions are presented. The second part in turn, examines scaffold-free applications, with a focus on the recently discovered cell sheet engineering. This article serves as a good reference for all applications of advanced cell therapies and as well as advantages and limitations of scaffold-based and scaffold-free strategies. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    3D

    No full text
    © 2021 Wiley Periodicals LLC.Fabrication of scaffolds using polymers and then cell seeding is a routine protocol of tissue engineering applications. Synthetic polymers have adequate mechanical properties to substitute for some bone tissue, but they are generally hydrophobic and have no specific cell recognition sites, which leads to poor cell affinity and adhesion. Some natural polymers, have high cell affinity but are mechanically weak and do not have the strength required as a bone supporting material. In the present study, 3D printed hybrid scaffolds were fabricated using PCL and GelMA carrying dental pulp stem cells (DPSCs), which is printed in the gaps between the PCL struts. This cell loaded GelMA was shown to support osteoinductivity, while the PCL provided mechanical strength needed to mimic the bone tissue. 3D printed PCL/GelMA and GelMA scaffolds were highly stable during 21 days of incubation in PBS. The compressive moduli of the hybrid scaffolds were in the range of the compressive moduli of trabecular bone. DPSCs were homogeneously distributed throughout the entire hydrogel component and exhibited high cell viability in both scaffolds during 21 days of incubation. Upon osteogenic differentiation DPSCs expressed two key matrix proteins, osteopontin and osteocalcin. Alizarin red staining showed mineralized nodules, which demonstrates osteogenic differentiation of DPSCs within GelMA. This construct yielded a very high cell viability, osteogenic differentiation and mineralization comparable to cell culture without compromising mechanical strength suitable for bone tissue engineering applications. Thus, 3D printed, cell loaded PCL/GelMA hybrid scaffolds have a great potential for use in bone tissue engineering applications

    Stem Cell and Advanced Nano Bioceramic Interactions

    No full text
    Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity
    corecore