18 research outputs found

    Evaluation of upper extremity neurorehabilitation using technology: A European Delphi consensus study within the EU COST Action Network on Robotics for Neurorehabilitation

    Get PDF
    Background: The need for cost-effective neurorehabilitation is driving investment into technologies for patient assessment and treatment. Translation of these technologies into clinical practice is limited by a paucity of evidence for cost-effectiveness. Methodological issues, including lack of agreement on assessment methods, limit the value of meta-analyses of trials. In this paper we report the consensus reached on assessment protocols and outcome measures for evaluation of the upper extremity in neurorehabilitation using technology. The outcomes of this research will be part of the development of European guidelines. Methods: A rigorous, systematic and comprehensive modified Delphi study incorporated questions and statements generation, design and piloting of consensus questionnaire and five consensus experts groups consisting of clinicians, clinical researchers, non-clinical researchers, and engineers, all with working experience of neurological assessments or technologies. For data analysis, two major groups were created: i) clinicians (e.g., practicing therapists and medical doctors) and ii) researchers (clinical and non-clinical researchers (e.g. movement scientists, technology developers and engineers). Results: Fifteen questions or statements were identified during an initial ideas generation round, following which the questionnaire was designed and piloted. Subsequently, questions and statements went through five consensus rounds over 20 months in four European countries. Two hundred eight participants: 60 clinicians (29 %), 35 clinical researchers (17 %), 77 non-clinical researchers (37 %) and 35 engineers (17 %) contributed. At each round questions and statements were added and others removed. Consensus (≥69 %) was obtained for 22 statements on i) the perceived importance of recommendations; ii) the purpose of measurement; iii) use of a minimum set of measures; iv) minimum number, timing and duration of assessments; v) use of technology-generated assessments and the restriction of clinical assessments to validated outcome measures except in certain circumstances for research. Conclusions: Consensus was reached by a large international multidisciplinary expert panel on measures and protocols for assessment of the upper limb in research and clinical practice. Our results will inform the development of best practice for upper extremity assessment using technologies, and the formulation of evidence-based guidelines for the evaluation of upper extremity neurorehabilitation

    How to improve walking, balance and social participation following stroke: a comparison of the long term effects of two walking aids--canes and an orthosis TheraTogs--on the recovery of gait following acute stroke. A study protocol for a multi-centre, single blind, randomised control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Annually, some 9000 people in Switzerland suffer a first time stroke. Of these 60% are left with moderate to severe walking disability. Evidence shows that rehabilitation techniques which emphasise activity of the hemiplegic side increase ipsilesional cortical plasticity and improve functional outcomes. Canes are commonly used in gait rehabilitation although they significantly reduce hemiplegic muscle activity. We have shown that an orthosis "TheraTogs" (a corset with elasticated strapping) significantly increases hemiplegic muscle activity during gait. The aim of the present study is to investigate the long term effects on the recovery of gait, balance and social participation of gait rehabilitation with TheraTogs compared to gait rehabilitation with a cane following first time acute stroke.</p> <p>Methods/Design</p> <p>Multi-centre, single blind, randomised trial with 120 patients after first stroke. When subjects have reached Functional Ambulation Category 3 they will be randomly allocated into TheraTogs or cane group. TheraTogs will be applied to support hip extensor and abductor musculature according to a standardised procedure. Cane walking held at the level of the radial styloid of the sound wrist. Subjects will walk throughout the day with only the assigned walking aid. Standard therapy treatments and usual care will remain unchanged and documented. The intervention will continue for five weeks or until patients have reached Functional Ambulation category 5. Outcome measures will be assessed the day before begin of intervention, the day after completion, 3 months, 6 months and 2 years. Primary outcome: Timed "up and go" test, secondary outcomes: peak surface EMG of gluteus maximus and gluteus medius, activation patterns of hemiplegic leg musculature, temporo-spatial gait parameters, hemiplegic hip kinematics in the frontal and sagittal planes, dynamic balance, daily activity measured by accelerometry, Stroke Impact Scale. Significance levels will be 5% with 95% CI's. IntentionToTreat analyses will be performed. Descriptive statistics will be presented.</p> <p>Discussion</p> <p>This study could have significant implications for the clinical practice of gait rehabilitation after stroke, particularly the effect and appropriate use of walking aids.</p> <p>The results could be important for the development of clinical guidelines and for the socio-economic costs of post-stroke care</p> <p>Trial registration number</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01366729">NCT01366729</a>.</p

    Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke

    Get PDF
    © 2015 Nijenhuis et al. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.BACKGROUND: Assistive and robotic training devices are increasingly used for rehabilitation of the hemiparetic arm after stroke, although applications for the wrist and hand are trailing behind. Furthermore, applying a training device in domestic settings may enable an increased training dose of functional arm and hand training. The objective of this study was to assess the feasibility and potential clinical changes associated with a technology-supported arm and hand training system at home for patients with chronic stroke. METHODS: A dynamic wrist and hand orthosis was combined with a remotely monitored user interface with motivational gaming environment for self-administered training at home. Twenty-four chronic stroke patients with impaired arm/hand function were recruited to use the training system at home for six weeks. Evaluation of feasibility involved training duration, usability and motivation. Clinical outcomes on arm/hand function, activity and participation were assessed before and after six weeks of training and at two-month follow-up. RESULTS: Mean System Usability Scale score was 69 % (SD 17 %), mean Intrinsic Motivation Inventory score was 5.2 (SD 0.9) points, and mean training duration per week was 105 (SD 66) minutes. Median Fugl-Meyer score improved from 37 (IQR 30) pre-training to 41 (IQR 32) post-training and was sustained at two-month follow-up (40 (IQR 32)). The Stroke Impact Scale improved from 56.3 (SD 13.2) pre-training to 60.0 (SD 13.9) post-training, with a trend at follow-up (59.8 (SD 15.2)). No significant improvements were found on the Action Research Arm Test and Motor Activity Log. CONCLUSIONS: Remotely monitored post-stroke training at home applying gaming exercises while physically supporting the wrist and hand showed to be feasible: participants were able and motivated to use the training system independently at home. Usability shows potential, although several usability issues need further attention. Upper extremity function and quality of life improved after training, although dexterity did not. These findings indicate that home-based arm and hand training with physical support from a dynamic orthosis is a feasible tool to enable self-administered practice at home. Such an approach enables practice without dependence on therapist availability, allowing an increase in training dose with respect to treatment in supervised settings. TRIAL REGISTRATION: This study has been registered at the Netherlands Trial Registry (NTR): NTR3669 .Peer reviewe

    INTERACTION, Training and monitoring of daily-life physical interaction with the environment after stroke

    No full text
    The objective of the recently started EU project INTERACTION is to develop an unobtrusive and modular system for monitoring the quality of daily-life activities of stroke subjects involving the upper and lower limbs

    Robot-Aided Gait Training with LOPES (chapter 21)

    No full text
    Robot-aided gait training in stroke survivors and spinal cord injury patients has shown inconclusive effects on walking ability. It is widely acknowledged that the control and design of the robotic devices needs to be further optimized to be able to provide training that fits better into modern insights in neural plasticity, motor learning, and motor recovery and in doing so improves its effectiveness. We will go more deeply into the need and scientific background for improvements on active participation, task specificity, and the facilitation of different recovery mechanisms. Subsequently, we will discuss recent advances that have been made in the control and design of robotic devices to improve on these aspects. Hereby, we will focus on the robotic gait training device LOPES that has been developed within our group. We will discuss how its design and control approach should contribute to improvements on all of the aforementioned aspects. The feasibility of the chosen approach is demonstrated by experimental results in healthy subjects and chronic stroke survivors. Future clinical testing has to demonstrate whether the outcome of robot-aided gait training can indeed be improved by increasing its task specificity, by the active contribution of the patient, and by allowing different movement strategies

    Immediate Effects of Cane Use on Gait Symmetry in Individuals with Subacute Stroke

    No full text
    Purpose: In stroke rehabilitation, there is a lack of consensus regarding the effects of cane use on gait symmetry. This study aimed to evaluate the immediate effects on gait symmetry of ambulating with a standard cane and a quad cane among individuals with subacute stroke
    corecore