93 research outputs found
An Acoustic Emission Evaluation of Environmentally Assisted Cracking of 7039-T6 Aluminum
Environmentally assisted cracking (EAC) is a significant problem in modern structures. The combination of a susceptible material, an adverse environment and mechanical stress can lead to unexpected failure of a structure by catastrophic crack growth. The mid-air failure of the aluminum alloy bulkhead and the subsequent loss of life on a Aloha Airlines flight on April 28, 1988 as shown in figure 1, illustrates this fact. Additionally, the operating environment of the US Army contributes to premature failure of structures such as aluminum alloy armor, high strength steel armor and high strength steel control components on Army helicopters [1]. These failures not only endanger life but they also seriously hamper the fighting readiness of U.S. forces because of equipment down time for inspection and repair of faulty components. Work has been performed to better characterize EAC resistance in high strength aluminum armor alloys [2]. These high strength alloys are particularly prone to failure in a chloride environment, an environment encountered in most of the world. If we plan to avoid such failures, we must better understand the EAC phenomena and more diligently detect growing cracks before they become critical in length. One characterization technique that promises to serve well both as a laboratory tool for understanding EAC and as a field device for detecting EAC is acoustic emission evaluation
Surface Barkhausen Noise Investigations of Stress and Leakage Flux Signals in Line Pipe
Pipelines are subjected to a number of different sources of stress. The principal in-service stress component is due to line pressure, with operating stresses commonly about 60% of the yield strength. Pipelines may also be subjected to considerable bending stresses, particularly when constructed on unstable terrain such as permafrost. Residual stresses may also be present, generally resulting from processing or welding, but more seriously as a consequence of mechanical damage. Anomalously high stress levels, whether residual or applied, may lead to pipeline failure; as a result serious efforts are being made to develop on-line stress detection methods. It is well established that stress is a major factor affecting magnetic properties of ferromagnetic materials, however the effects are complex and have only recently begun to be understood [1,2]. Because of the strong influence of stress on magnetic properties, magnetic NDE techniques are being considered as potential methods for the detection of stress
Effect of Different Stages of Tensile Deformation on Magnetic Barkhausen Emission in High Strength Low Alloy Steel
Micromagnetic techniques have been considered as a potential non-destructive evaluation (NDE) method for microstructural characterization and stress/strain measurements in ferritic steels [1β14]. The effect of tensile deformation on micromagnetic parameters has been studied by many researchers [8β14]. Most of these studies have been done only in the elastic region and the obtained relation between magnetic parameters and the applied stress has been used to determine the residual stresses, considering that the residual stress level will not exceed the yield stress of the material. These studies have not taken into account the microstructural changes due to dislocations generation by the plastic deformation.</p
Human Cysteine Cathepsins Are Not Reliable Markers of Infection by Pseudomonas aeruginosa in Cystic Fibrosis
Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P. aeruginosa-negative (6 Psβ) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (βΌ2-fold) in the Ps+ and Psβ groups (p<0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins, which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Psβ samples, despite the possible release of the βΌ31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike human neutrophil elastase, are not suitable markers of P. aeruginosa infection
Do I Have My Attention? Speed of Processing Advantages for the Self-Face Are Not Driven by Automatic Attention Capture
We respond more quickly to our own face than to other faces, but there is debate over whether this is connected to attention-grabbing properties of the self-face. In two experiments, we investigate whether the self-face selectively captures attention, and the attentional conditions under which this might occur. In both experiments, we examined whether different types of face (self, friend, stranger) provide differential levels of distraction when processing self, friend and stranger names. In Experiment 1, an image of a distractor face appeared centrally β inside the focus of attention β behind a target name, with the faces either upright or inverted. In Experiment 2, distractor faces appeared peripherally β outside the focus of attention β in the left or right visual field, or bilaterally. In both experiments, self-name recognition was faster than other name recognition, suggesting a self-referential processing advantage. The presence of the self-face did not cause more distraction in the naming task compared to other types of face, either when presented inside (Experiment 1) or outside (Experiment 2) the focus of attention. Distractor faces had different effects across the two experiments: when presented inside the focus of attention (Experiment 1), self and friend images facilitated self and friend naming, respectively. This was not true for stranger stimuli, suggesting that faces must be robustly represented to facilitate name recognition. When presented outside the focus of attention (Experiment 2), no facilitation occurred. Instead, we report an interesting distraction effect caused by friend faces when processing strangersβ names. We interpret this as a βsocial importanceβ effect, whereby we may be tuned to pick out and pay attention to familiar friend faces in a crowd. We conclude that any speed of processing advantages observed in the self-face processing literature are not driven by automatic attention capture
The Muslim headscarf and face perception: "they all look the same, don't they?"
YesThe headscarf conceals hair and other external features of a head (such as the ears). It therefore may have implications for the way in which such faces are perceived. Images of faces with hair (H) or alternatively, covered by a headscarf (HS) were used in three experiments. In Experiment 1 participants saw both H and HS faces in a yes/no recognition task in which the external features either remained the same between learning and test (Same) or switched (Switch). Performance was similar for H and HS faces in both the Same and Switch condition, but in the Switch condition it dropped substantially compared to the Same condition. This implies that the mere presence of the headscarf does not reduce performance, rather, the change between the type of external feature (hair or headscarf) causes the drop in performance. In Experiment 2, which used eye-tracking methodology, it was found that almost all fixations were to internal regions, and that there was no difference in the proportion of fixations to external features between the Same and Switch conditions, implying that the headscarf influenced processing by virtue of extrafoveal viewing. In Experiment 3, similarity ratings of the internal features of pairs of HS faces were higher than pairs of H faces, confirming that the internal and external features of a face are perceived as a whole rather than as separate components.The Educational Charity of the Federation of Ophthalmic and Dispensing Opticians
Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation
Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1beta and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1beta has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1beta from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1beta was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1beta secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1beta secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions
Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinct mechanisms for effector translocation, but a shared mechanism of post-translocation autoprocessing that releases these functional domains from the large holotoxins. These toxins carry an embedded cysteine protease domain (CPD) that is activated for autoprocessing by binding inositol hexakisphosphate (InsP6), a molecule found exclusively in eukaryotic cells. Thus, InsP6-induced autoprocessing represents a unique mechanism for toxin effector delivery specifically within the target cell. This review summarizes recent studies of the structural and molecular events for activation of autoprocessing for both CGT and MARTX toxins, demonstrating both similar and potentially distinct aspects of autoprocessing among the toxins that utilize this method of activation and effector delivery
Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis
Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages
- β¦