8 research outputs found

    In vivo toxicity and genotoxicity of beauvericin and enniatins. Combined approach to study in vivo toxicity and genotoxicity of mycotoxins beauvericin (BEA) and enniatin B (ENNB)

    No full text
    Beauvericin (BEA) and Enniatins (ENN) are mycotoxins produced by Fusarium fungi detected in food and feed; there are insufficient data to establish their reference values. To evaluate BEA and ENN oral toxicity, an integrated approach was applied. Among ENN, Enniatin B (ENNB) was selected as test substance. The approach is composed by: i) in vitro and acute in vivo genotoxicity tests; ii) a repeated-dose oral toxicity study focused on genotoxic, immune, endocrine, nervous endpoints and the reproductive/developmental toxicity screening. For BEA, all the genotoxicity endpoints yielded negative results excluding Comet assay in duodenum and kidney after repeated doses. BEA immunotoxicity was observed in female mice, concentrated in number and functional activity of effector T cells in the spleen. Based on the repeated-dose BEA study, the No Observed Adverse Effect Level (NOAEL) for female mice is 1 mg/kg b.w. per day (increased thyroid pycnotic nuclei and endometrial hyperplasia). In males, the NOAEL is 0.1 mg/kg b.w. per day (reduced colloid and altered T4 serum levels). Maternal NOAEL is 0.1 mg/kg b.w. per day (increased thymus weight), developmental NOAEL is 10 mg/kg b.w. per day. For ENNB, the results support a genotoxic effect in bone marrow and liver cells after acute treatment, but not after repeated exposure. Immunotoxic ENNB effects were observed in both genders, suggestive of a suppressive/inhibiting activity particularly evident in males. Based on the repeated-dose ENNB study, the NOAEL for females is 0.18 mg/kg b.w. per day (histomorphometrical effects on thymus, uterus and spleen). In male mice, the NOAEL is 1.8 mg/kg b.w. per day (enterocyte vacuolization in duodenum and increased Reactive Oxygen Species and reduced Glutathione brain levels). The maternal NOAEL is 1.8 mg/kg b.w. per day (decreased white pulp area and increased red/white pulp area ratio in spleen), developmental NOAEL is 18 mg/kg b.w. per day

    Allergenic activity of Pseudoterranova decipiens (Nematoda: Anisakidae) in BALB/c mice

    No full text
    Abstract Background Anisakis simplex is the only fishery-product associated parasite causing clinical allergic responses in humans so far. However, other anisakids, due to the presence of shared or own allergens, could also lead to allergic reactions after sensitization. The aim of this study was to determine if Pseudoterranova decipiens belonging to the family Anisakidae has allergenic activity and is able to induce sensitization after oral administration in a murine (BALB/c mice) model. Results The ingestion of A. pegreffii proteins by BALB/c mice, which had been previously sensitized by intraperitoneal inoculation with the corresponding live L3 larvae, triggers signs of allergy within 60 min, whereas P. decipiens did to a lesser extent. Beside symptoms, allergic reactions were furtherly supported by the presence of histamine in sera of sensitized mice. Specific IgG1 and IgE responses were detected in sera of all sensitized mice from week four. Specific IgG2a response was detected in sera from mice sensitized to P. decipiens. After polyclonal or specific activation with anti-CD3/anti-CD28 or antigens, respectively, splenocytes from mice infected i.p. with A. pegreffii or P. decipiens larvae showed significantly higher production of IL-10 than naïve mice. After stimulation with specific antigens, significantly higher IL-5 and IL-13 amounts were produced by specific antigen stimulated splenocytes than by the naïve cells; only P. decipiens proteins induced IFN-ɣ. Conclusions The overall results suggest that infection with P. decipiens can sensitize mice to react to subsequent oral challenge with anisakid proteins, as described for A. simplex (sensu stricto) and A. pegreffii infections. The results show that anisakid proteins induce a dominant Th2 response, although P. decipiens could also induce a mixed type 1/type 2 pattern
    corecore