46 research outputs found

    Experimental investigation into vibro-acoustic emission signal processing techniques to quantify leak flow rate in plastic water distribution pipes

    Get PDF
    Leakage from water distribution pipes is a problem worldwide, and are commonly detected using the Vibro-Acoustic Emission (VAE) produced by the leak. The ability to quantify leak flow rate using VAE would have economic and operational benefits. However the complex interaction between variables and the leak’s VAE signal make classification of leak flow rate difficult and therefore there has been a lack of research in this area. The aim of this study is to use VAE monitoring to investigate signal processing techniques that quantify leak flow rate. A number of alternative signal processing techniques are deployed and evaluated, including VAE counts, signal Root Mean Square (RMS), peak in magnitude of the power spectral density and octave banding. A strong correlation between the leak flow rate and signal RMS was found which allowed for the development of a flow prediction model. The flow prediction model was also applied to two other media types representing buried water pipes and it was found that the surrounding media had a strong influence on the VAE signal which reduced the accuracy of flow classification. A further model was developed for buried pipes, and was found to yield good leak flow quantification using VAE. This paper therefore presents a useful method for water companies to prioritise maintenance and repair of leaks on water distribution pipes

    Experimental investigation into techniques to predict leak shapes in water distribution systems using vibration measurements

    Get PDF
    Water loss from leaking pipes represents a substantial loss of revenue as well as environmental and public health concerns. Leak location is normally identified by placing sensors either side of the leak and recording and analysing the leak noise. The leak noise contains information about the leak’s characteristics, including its shape. Whilst a tool which non-invasively provides information about a leak’s shape from the leak noise would be useful for water industry practitioners, no tool currently exists. This study evaluates the effect of various leak shapes on the vibration signal and presents a unique methodology for predicting the leak shape from the vibration signal. An innovative signal processing technique which utilises the machine learning method Random Forest classifiers is used in combination with a number of signal features in order to develop a leak shape prediction algorithm. The results demonstrate a robust methodology for predicting leak shape at several leak flow rates and backfill types, providing a useful tool for water companies to assess leak repair based on leak shape

    ‘The Brick’ is not a brick: a comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. ‘the Brick’); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J = 4(0, 4) − 3(0, 3) data at 3 mm, using two new pieces of software that we make available to the community. First, SCOUSEPY, a Python implementation of the spectral line fitting algorithm SCOUSE. Secondly, ACORNS (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line-of-sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1 km s−1, which is somewhat larger than predicted by velocity dispersion-size relations for the central molecular zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D∼1.2±0.3⁠. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling, we conclude that G0.253+0.016 is not a single, coherent, and centrally condensed molecular cloud; ‘the Brick’ is not a brick. Instead, G0.253+0.016 is a dynamically complex and hierarchically structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ

    Angle-resolved photoemission study of USb2: the 5f band structure

    Full text link
    Single crystal antiferromagnetic USb2 was studied at 15K by angle-resolved photoemission with an overall energy resolution of 24 meV. The measurements unambiguously show the dispersion of extremely narrow bands situated near the Fermi level. The peak at the Fermi level represents the narrowest feature observed in 5f-electron photoemission to date. The natural linewidth of the feature just below the Fermi level is not greater than 10 meV. Normal emission data indicate a three dimensional aspect to the electronic structure of this layered material.Comment: 22 pages including figure

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Influence of pipe material on the transmission of vibroacoustic leak signals in real complex water distribution systems: case study

    No full text
    Water loss through leaky pipes is a worldwide issue leading to economic loss, environmental damage, and dangers to public health. Leak detection via leak noise correlation using vibroacoustic emission techniques is a common method for reducing water loss in water distribution systems (WDSs). This has been reported to be highly successful in detecting leaks in metallic pipes, but reports of its efficacy in plastic pipes is varied, highlighting a strong influence of pipe material on the performance of leak noise correlators. However, this has never been experimentally quantified in the context of other pipe materials with a good experimental methodology whereby other factors (such as leak flow rate) are standardized. Moreover, the majority of leak detection research using leak noise correlators is conducted on pipe rigs or buried test facilities, which bear little resemblance to the complexities of a real WDS. The overall aim of this research is to study the impact of pipe material on the transmission of the leak signal, investigating different pipe materials in a real, complex WDS. This article presents a rigorous, novel methodology whereby artificial leaks are created using standpipes on different pipe materials and the transmission of the leak noise studied. The results demonstrate a strong influence of pipe material on the transmission of the leak noise, influencing the frequency and amplitude of the leak signal, which varies with distance and leak flow rate. It was found that cross-correlation was a good method for identifying a leak’s location for cast iron and asbestos cement pipe materials, but had low efficacy on polyethylene pipe due to the high attenuative properties of the polyethylene material. This is shown to impact the cross-correlation of leak signals and therefore how effective leak noise correlators are at identifying leaks in plastic pipe
    corecore