1,879 research outputs found

    Studies on the vascular cambium

    Get PDF
    The nature of the vascular cambium is discussed and the length of the elements in the secondary xylem related to the division and elongation cycles of the cambial fusiform initials. Particular attention is given to the activities of the storeyed cambium. The ontogeny of the storeyed cambium is described for Hoheria angustifolia Raoul. (Malvaceae). The transition from procambium to cambium was found to take place gradually, the meristem acquiring cambial characteristics over a number of internodes, some before and some after internodal elongation had ceased. The cambium is non storeyed at the commencement of secondary growth but later develops a storeyed pattern. Developmental changes in the cambium with radial growth were studied in Aeschynomene hispida Willd. (Papilionaceae). Repeated radial longitudinal divisions in the fusiform cambial initials in this plant produce a highly developed storeyed pattern with radial growth. The frequency of these divisions decreases with increasing distance from the stem centre. The mean length of the fusiform initials decreases slightly with radial growth. Variation in the size of the fusiform initials and vessel members was also investigated in Hoberia angustifolia. Mean length of the fusiform initials was found to remain constant with increasing distance from the stem centre but a slight decrease was observed with increasing height in the tree. Mean fusiform initial width showed an increase followed by a decrease with increasing height in the tree. The significance of these results is related to the division pattern in the storeyed cambium

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    Concepts for manned lunar habitats

    Get PDF
    The design philosophy that will guide the design of early lunar habitats will be based on a compromise between the desired capabilities of the base and the economics of its development and implantation. Preferred design will be simple, make use of existing technologies, require the least amount of lunar surface preparation, and minimize crew activity. Three concepts for an initial habitat supporting a crew of four for 28 to 30 days are proposed. Two of these are based on using Space Station Freedom structural elements modified for use in a lunar-gravity environment. A third concept is proposed that is based on an earlier technology based on expandable modules. The expandable modules offer significant advantages in launch mass and packaged volume reductions. It appears feasible to design a transport spacecraft lander that, once landed, can serve as a habitat and a stand-off for supporting a regolith environmental shield. A permanent lunar base habitat supporting a crew of twelve for an indefinite period can be evolved by using multiple initial habitats. There appears to be no compelling need for an entirely different structure of larger volume and increased complexity of implantation

    (Quantum) Space-Time as a Statistical Geometry of Lumps in Random Networks

    Full text link
    In the following we undertake to describe how macroscopic space-time (or rather, a microscopic protoform of it) is supposed to emerge as a superstructure of a web of lumps in a stochastic discrete network structure. As in preceding work (mentioned below), our analysis is based on the working philosophy that both physics and the corresponding mathematics have to be genuinely discrete on the primordial (Planck scale) level. This strategy is concretely implemented in the form of \tit{cellular networks} and \tit{random graphs}. One of our main themes is the development of the concept of \tit{physical (proto)points} or \tit{lumps} as densely entangled subcomplexes of the network and their respective web, establishing something like \tit{(proto)causality}. It may perhaps be said that certain parts of our programme are realisations of some early ideas of Menger and more recent ones sketched by Smolin a couple of years ago. We briefly indicate how this \tit{two-story-concept} of \tit{quantum} space-time can be used to encode the (at least in our view) existing non-local aspects of quantum theory without violating macroscopic space-time causality.Comment: 35 pages, Latex, under consideration by CQ

    Saltation transport on Mars

    Full text link
    We present the first calculation of saltation transport and dune formation on Mars and compare it to real dunes. We find that the rate at which grains are entrained into saltation on Mars is one order of magnitude higher than on Earth. With this fundamental novel ingredient, we reproduce the size and different shapes of Mars dunes, and give an estimate for the wind velocity on Mars.Comment: 4 pages, 3 figure

    Genetic and pharmacological targeting of transcriptional repression in resistance to thyroid hormone alpha

    Get PDF
    Background Thyroid hormones act in bone and cartilage via thyroid hormone receptor α (TRα). In the absence of T3, TRα interacts with co-repressors, including nuclear receptor co-repressor-1 (NCoR1), which recruit histone deacetylases (HDACs) and mediate transcriptional repression. Dominant-negative mutations of TRα cause resistance to thyroid hormone α (RTHα; OMIM 614450), characterized by excessive repression of T3 target genes leading to delayed skeletal development, growth retardation and bone dysplasia. Treatment with thyroxine has been of limited benefit even in mildly affected individuals and there is a need for new therapeutic strategies. We hypothesized that (i) the skeletal manifestations of RTHα are mediated by the persistent TRα/NCoR1/HDAC repressor complex containing mutant TRα, and (ii) treatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) would ameliorate these manifestations. Methods We determined the skeletal phenotypes of (i) Thra1PV/+ mice, a well characterized model of RTHα, (ii) Ncor1ΔID/ΔID mice, which express an NCoR1 mutant that fails to interact with TRα, and (iii) Thra1PV/+Ncor1ΔID/ΔID double mutant adult mice. Wild-type, Thra1PV/+, Ncor1ΔID/ΔID, and Thra1PV/+Ncor1ΔID/ΔID double mutant mice were also treated with SAHA to determine whether HDAC inhibition results in amelioration of skeletal abnormalities. Results Thra1PV/+ mice had a severe skeletal dysplasia characterized by short stature, abnormal bone morphology and increased bone mineral content. Despite normal bone length, Ncor1ΔID/ΔID mice displayed increased cortical bone mass, mineralization and strength. Thra1PV/+Ncor1ΔID/ΔID double mutant mice displayed only a small improvement of skeletal abnormalities compared to Thra1PV/+ mice. Treatment with SAHA to inhibit histone deacetylation had no beneficial or detrimental effects on bone structure, mineralization or strength in wild-type or mutant mice. Conclusions These studies indicate treatment with SAHA is unlikely to improve the skeletal manifestations of RTHα. Nevertheless, the findings (i) confirm that TRα1 has a critical role in the regulation of skeletal development and adult bone mass, (ii) suggest a physiological role for alternative co-repressors that interact with TR in skeletal cells, and (iii) demonstrate a novel role for NCoR1 in the regulation of adult bone mass and strength

    Aeolian transport layer

    Full text link
    We investigate the airborne transport of particles on a granular surface by the saltation mechanism through numerical simulation of particle motion coupled with turbulent flow. We determine the saturated flux qsq_{s} and show that its behavior is consistent with a classical empirical relation obtained from wind tunnel measurements. Our results also allow to propose a new relation valid for small fluxes, namely, qs=a(u∗−ut)αq_{s}=a(u_{*}-u_{t})^{\alpha}, where u∗u_{*} and utu_{t} are the shear and threshold velocities of the wind, respectively, and the scaling exponent is α≈2\alpha \approx 2. We obtain an expression for the velocity profile of the wind distorted by the particle motion and present a dynamical scaling relation. We also find a novel expression for the dependence of the height of the saltation layer as function of the wind velocity.Comment: 4 pages, 4 figure

    Hyperentangled States

    Get PDF
    We investigate a new class of entangled states, which we call 'hyperentangled',that have EPR correlations identical to those in the vacuum state of a relativistic quantum field. We show that whenever hyperentangled states exist in any quantum theory, they are dense in its state space. We also give prescriptions for constructing hyperentangled states that involve an arbitrarily large collection of systems.Comment: 23 pages, LaTeX, Submitted to Physical Review

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases.

    Get PDF
    The systemic and organ-specific human fibrotic disorders collectively represent one of the most serious health problems world-wide causing a large proportion of the total world population mortality. The molecular pathways involved in their pathogenesis are complex and despite intensive investigations have not been fully elucidated. Whereas chronic inflammatory cell infiltration is universally present in fibrotic lesions, the central role of monocytes and macrophages as regulators of inflammation and fibrosis has only recently become apparent. However, the precise mechanisms involved in the contribution of monocytes/macrophages to the initiation, establishment, or progression of the fibrotic process remain largely unknown. Several monocyte and macrophage subpopulations have been identified, with certain phenotypes promoting inflammation whereas others display profibrotic effects. Given the unmet need for effective treatments for fibroproliferative diseases and the crucial regulatory role of monocyte/macrophage subpopulations in fibrogenesis, the development of therapeutic strategies that target specific monocyte/macrophage subpopulations has become increasingly attractive. We will provide here an overview of the current understanding of the role of monocyte/macrophage phenotype subpopulations in animal models of tissue fibrosis and in various systemic and organ-specific human fibrotic diseases. Furthermore, we will discuss recent approaches to the design of effective anti-fibrotic therapeutic interventions by targeting the phenotypic differences identified between the various monocyte and macrophage subpopulations
    • 

    corecore