33 research outputs found

    Reconstruction of metabolic networks from high-throughput metabolite profiling data: in silico analysis of red blood cell metabolism

    Full text link
    We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For this, we generate synthetic metabolic profiles for benchmarking purposes based on a well-established model for red blood cell metabolism. A variety of data sets is generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We apply ARACNE, a mainstream transcriptional networks reverse engineering algorithm, to these data sets and observe performance comparable to that obtained in the transcriptional domain, for which the algorithm was originally designed.Comment: 14 pages, 3 figures. Presented at the DIMACS Workshop on Dialogue on Reverse Engineering Assessment and Methods (DREAM), Sep 200

    From Violation to Reconstruction: The Process of Self-Renewal Associated with Chronic Fatigue Syndrome

    Get PDF
    Chronic Fatigue Syndrome (CFS) is a contested condition that generates scepticism and occupies a marginalised position within medical and social contexts. The thesis examines the illness experiences, and specifically the experiences of self, for people affected with CFS. Using qualitative inquiry, a substantive theory related to the process of self-renewal and adaptation associated with CFS is explicated. The theory encompasses the trajectory of CFS from onset to chronicity, and in exceptional instances, recovery. Illness narratives were derived from in-depth, semi-structured interviews of 19 adults, including 16 people affected with, and 3 people recovered from, CFS. Data was coded and analysed using a grounded theory approach. Analysis generated two parallel narratives that defined the illness experience of CFS: the narrative of the illness biographies and the narrative of self, specifically the struggling and diminished self seeking renewal. The illness biographies encompassed the stories of symptoms and their explanations, the encounters that ensued and their contentious milieu. The narrative of self was the primary narrative. It articulated the negative consequences to self and personhood associated with CFS, named the Violation of Self, and the consequent efforts of participants to decrease the struggle and violation by use of the Guardian Response and the Reconstructing Response. The Guardian Response provided protection and self-reclamation. The Reconstructing Response fostered self-renewal and meaning. The two narratives were bridged by the threats of CFS. That is, the illness biographies were accompanied by threats of disruption related to chronic illness, and by threats of invalidation that arose from CFS as a contested condition. In turn, these threats provided the catalyst to the violation and responses as described in the narrative of self. Under different conditions the relative strengths of violation, guardianship or reconstruction fluctuated, and it was these fluctuations that presented the participants with the ongoing struggle of CFS

    Germline determinants of the somatic mutation landscape in 2,642 cancer genomes

    Get PDF
    Cancers develop through somatic mutagenesis, however germline genetic variation can markedly contribute to tumorigenesis via diverse mechanisms. We discovered and phased 88 million germline single nucleotide variants, short insertions/deletions, and large structural variants in whole genomes from 2,642 cancer patients, and employed this genomic resource to study genetic determinants of somatic mutagenesis across 39 cancer types. Our analyses implicate damaging germline variants in a variety of cancer predisposition and DNA damage response genes with specific somatic mutation patterns. Mutations in the MBD4 DNA glycosylase gene showed association with elevated C>T mutagenesis at CpG dinucleotides, a ubiquitous mutational process acting across tissues. Analysis of somatic structural variation exposed complex rearrangement patterns, involving cycles of templated insertions and tandem duplications, in BRCA1-deficient tumours. Genome-wide association analysis implicated common genetic variation at the APOBEC3 gene cluster with reduced basal levels of somatic mutagenesis attributable to APOBEC cytidine deaminases across cancer types. We further inferred over a hundred polymorphic L1/LINE elements with somatic retrotransposition activity in cancer. Our study highlights the major impact of rare and common germline variants on mutational landscapes in cancer

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Applications of Translational Bioinformatics in Transplantation

    No full text

    Reducing the Computational Complexity of Information Theoretic Approaches for Reconstructing Gene Regulatory Networks

    No full text
    Information theoretic approaches are increasingly being used for reconstructing regulatory networks from microarray data. These approaches start by computing the pairwise mutual information (MI) between all gene pairs. The resulting MI matrix is then manipulated to identify regulatory relationships. A barrier to these approaches is the time-consuming step of computing the MI matrix. We present a method to reduce this computation time. We apply spectral analysis to re-order the genes, so that genes that share regulatory relationships are more likely to be placed close to each other. Then, using a “sliding window” approach with appropriate window size and step size, we compute the MI for the genes within the sliding window, and the remainder is assumed to be zero. Using both simulated data and microarray data, we demonstrate that our method does not incur performance loss in regions of high-precision and low-recall, while the computational time is significantly lowered. The proposed method can be used with any method that relies on the mutual information to reconstruct networks

    Modelling non-homogeneous dynamic Bayesian networks with piece-wise linear regression models

    No full text
    In statistical genomics and systems biology non-homogeneous dynamic Bayesian networks (NH-DBNs) have become an important tool for learning regulatory networks and signalling pathways from post-genomic data, such as gene expression time series. This chapter gives an overview of various state-of-the-art NH-DBN models with a variety of features. All NH-DBNs, presented here, have in common that they are Bayesian models that combine linear regression with multiple changepoint processes. The NH-DBN models can be used for learning the network structures of time-varying regulatory processes from data, where the regulatory interactions are subject to temporal change. We conclude this chapter with an illustration of the methodology on two applications, related to morphogenesis in Drosophila and synthetic biology in yeast
    corecore