11,834 research outputs found
Contemporary Issues in Current Account Operations in Pakistani IBs - Sharia Compliant Solution
Contemporary Sharia scholars have three stances about the Current Account Operations in Pakistani Islamic Banks (IBs) i.e., (i) Ijarah based contract (ii) Wadi'ah based contract, and (iii) Qard based contract. This paper is an attempt to delve into the root causes of the differences of scholars and to find the Sharia-compliant solution acceptable for all. Descriptive as well as applied approaches are used in this paper. Clearing of ambiguity on this issue may result in twofold benefits: from the public point of view, it would satisfy practising Muslims which may result in form of huge deposits in this account (ii) from IBs viewpoint the Current Account is a bonus deposit
The Direction of Causality between Health Spending and GDP: The Case of Pakistan
Relevant literature suggests that the most important determinant of health care spending is real GDP. Moreover, there is considerable evidence that health care spending rises at a faster rate than real GDP. This paper uses recently developed tests for the existence of a long run relationship to analyze the links between health care spending and GDP. We are, particularly, interested in estimating the elasticity parameter. The aim of the paper is to provide a new method of analysis to those used in recent papers on this subject. Typically in applied analysis, testing for the existence of cointegration and causality can only be carried out once the time series properties of the data have been established. For example, tests for cointegration require the variables to integrated of the same order, typically I(1), prior to estimation. By eliminating the need for unit root pre-testing, the tests applied here considerably simplify the inference procedure. They also reduce the potential for distortions in the inference due to the unknown properties of the testing sequence. Our findings include robust evidence that, for Pakistan, the income elasticity for health care spending is greater than one and that the elasticity value is stable over the estimation period.Health Spending; GDP; Causality
Minimizing Outage Probability by Exploiting CSI in Wireless Powered Cooperative Networks
In this work, we address the relay selection problem for the wireless powered
communication networks, where the relays harvest energy from the source radio
frequency signals. A single source-destination pair is considered without a
direct link. The connecting relay nodes are equipped with storage batteries of
infinite size. We assume that the channel state information (CSI) on the
source-relay link is available at the relay nodes. Depending on the
availability of the CSI on the relay-destination link at the relay node, we
propose different relay selection schemes and evaluate the outage probability.
The availability of the CSI at the relay node on the relay-destination link
considerably improves the performance due to additional flexibility in the
relay selection mechanism. We numerically quantify the performance for the
proposed schemes and compare the outage probability for fixed and equal number
of wireless powered forwarding relays.Comment: accepted in IEEE Globecom 201
Energy Efficient Multiuser Scheduling: Statistical Guarantees on Bursty Packet Loss
In this paper, we consider energy efficient multiuser scheduling. Packet loss
tolerance of the applications is exploited to minimize average system energy.
There is a constraint on average packet drop rate and maximum number of packets
dropped successively (bursty loss). A finite buffer size is assumed. We propose
a scheme which schedules the users opportunistically according to the channel
conditions, packet loss constraints and buffer size parameters. We assume
imperfect channel state information at the transmitter side and analyze the
scheme in large user limit using stochastic optimization techniques. First, we
optimize system energy for a fixed buffer size which results in a corresponding
statistical guarantee on successive packet drop. Then, we determine the minimum
buffer size to achieve a target (improved) energy efficiency for the same (or
better) statistical guarantee. We show that buffer size can be traded
effectively to achieve system energy efficiency for target statistical
guarantees on packet loss parameters.Comment: Proc. Physcomnet in conjunction with WIOPT 201
Maximizing Energy Efficiency in Multiple Access Channels by Exploiting Packet Dropping and Transmitter Buffering
Quality of service (QoS) for a network is characterized in terms of various
parameters specifying packet delay and loss tolerance requirements for the
application. The unpredictable nature of the wireless channel demands for
application of certain mechanisms to meet the QoS requirements. Traditionally,
medium access control (MAC) and network layers perform these tasks. However,
these mechanisms do not take (fading) channel conditions into account. In this
paper, we investigate the problem using cross layer techniques where
information flow and joint optimization of higher and physical layer is
permitted. We propose a scheduling scheme to optimize the energy consumption of
a multiuser multi-access system such that QoS constraints in terms of packet
loss are fulfilled while the system is able to maximize the advantages emerging
from multiuser diversity. Specifically, this work focuses on modeling and
analyzing the effects of packet buffering capabilities of the transmitter on
the system energy for a packet loss tolerant application. We discuss low
complexity schemes which show comparable performance to the proposed scheme.
The numerical evaluation reveals useful insights about the coupling effects of
different QoS parameters on the system energy consumption and validates our
analytical results.Comment: in IEEE trans. Wireless communications, 201
- …