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Maximizing Energy Efficiency in Multiple Access
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Abstract—Quality of service (QoS) for a network is charac-
terized in terms of various parameters specifying packet delay
and loss tolerance requirements for the application. The unpre-
dictable nature of the wireless channel demands for application of
certain mechanisms to meet the QoS requirements. Traditionally,
medium access control (MAC) and network layers perform these
tasks. However, these mechanisms do not take (fading) channel
conditions into account. In this paper, we investigate the problem
using cross layer techniques where information flow and joint
optimization of higher and physical layer is permitted. We propose
a scheduling scheme to optimize the energy consumption of a
multiuser multi-access system such that QoS constraints in terms
of packet loss are fulfilled while the system is able to maximize
the advantages emerging from multiuser diversity. Specifically,
this work focuses on modeling and analyzing the effects of packet
buffering capabilities of the transmitter on the system energy
for a packet loss tolerant application. We discuss low complexity
schemes which show comparable performance to the proposed
scheme. The numerical evaluation reveals useful insights about the
coupling effects of different QoS parameters on the system energy
consumption and validates our analytical results.

Index Terms—Multiuser diversity, green communications, ra-
dio resource allocation, opportunistic scheduling, Markov chain,
packet loss–energy trade-off, stochastic optimization.

I. INTRODUCTION

THE QoS parameters like throughput, latency, packet loss
rate etc., characterize the behavior of network traffic.

Specifically, there are some strict hard requirements in terms
of worst case behavior for multimedia traffic like minimum
throughput and maximum tolerable packet delay, which need
to be fulfilled to maintain the quality of experience (QoE) of
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the application. At the same time, system energy efficiency
has emerged as one of the key performance indicators for the
wireless network [2]–[4]. For the system design, QoS param-
eters can be treated as degrees of freedom (DoF) to achieve
high system level energy efficiency. If the application is loss
and delay tolerant, the DoFs can be exploited to maximize the
system energy efficiency.

In the literature, energy efficient scheduling has been dis-
cussed in different settings for delay limited systems [5]–[8].
The authors in [9] propose a scheme which schedules the
transmission of multimedia packets in such a way that all the
users have a fair share of packet loss according to their QoS
requirements, and maximizes the number of the served users
under the QoS constraints. The author in [10] addresses the
importance of packet dropping mechanisms by energy point
of view. Traditionally, average packet drop rate is considered
to be one of the most important parameters for system de-
sign [11], [12]. However, QoE for the application, specifically
multimedia streaming, depends on the other characteristics of
packet dropping. Average packet drop parameter characterizes
the behavior of the application on long term basis only. In mul-
timedia applications, short term behavior dictates the QoE. For
example, consider a scenario where the average packet drop rate
θtar is quite small but a large number of packets are dropped
successively due to the deeply faded wireless channel (called
bursty packet loss). In spite of fulfilling an average packet drop
rate guarantee (on long term basis), the users will experience
a jitter in the perceived QoE (for a multimedia application).
Thus, QoS must also be defined in terms of maximum number
of packets allowed to be dropped successively in addition to
the average packet drop probability. This additional parameter
characterizing the pattern of the dropped packets is termed
continuity constraint parameter N [13]. Packet scheduling
constrained by average packet drop rate and maximum suc-
cessive packet drop belongs to a class of sequential resource
allocation problems, known as Restless Multiarmed Bandit
Processes (RMBPs) [14]. This problem has been addressed
for Asynchronous Transfer Mode (ATM) networks in [15].
The authors in [16] discuss a similar problem and an optimal
dropping scheme with the objective to minimize/maximize the
packet drop gap is proposed. A useful analytical framework is
discussed in [17] to dimension the packet loss burstiness over
generic wireless channels and a new metric to characterize the
packet loss burstiness is proposed.

Traditionally, such problems are handled at upper layers of
communications through link adaptation or automatic repeat
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request (ARQ) mechanisms. However, bringing this informa-
tion to the physical layer design shows significant merits as the
information can effectively be used for opportunistic schedul-
ing purposes. The work in [13] proposes an opportunistic
scheduling scheme which exploits the DoF available through
continuity constraint and average packet drop parameters and
aims at minimizing the average system energy. The work
characterizes the effects of the θtar and N on the system
energy consumption. However, the proposed scheme does not
allow buffering of data packets which is an integral part of the
resource allocation mechanisms.

This work generalizes the framework in [13] for the case
when buffering of packets is allowed for a finite number of time
slots on the transmitter side. This additional DoF poses new
challenges in terms of modeling and analysis of the problem
because a buffer provides multiple opportunities to exploit mul-
tiuser diversity as compared to a single opportunity in real time
traffic. In addition to the QoS parameters θtar and N , the size
of the buffer B provides another trade-off for energy efficiency.
It should be noted that in contrast to the conventional system
design goal of dropping of data packet as a consequence of not
being able to provide required rate to the users, our approach
encourages dropping of packets to optimize the system energy
consumption as long as the QoS parameters allow.

We investigate the energy efficiency of the system con-
strained by the coupled packet drop (QoS) parameters. The
main contributions of this work are as follows:

• We allow buffering at transmitter side which allows
multi-packet scheduling as compared to a single packet
scheduling in [13]. The buffering effect to exploit channel
diversity has been well studied in literature, but average
and successive packet (bursty) loss constraints have not
been investigated simultaneously over fading channels for
the buffering system. The modeling of successive packet
loss constraint requires not only to decide how many
(average) packets need to be transmitted, but which of
them are more significant with respect to QoE.

• We propose a novel scheduling scheme which takes into
account channel distribution, packet loss characteristics
and maximum delay limitations for a packet. This gen-
eralized framework is more complex due to involvement
of an additional DoF, but provides better results in terms
of energy efficiency as demonstrated through asymptotic
case analysis and numerical evaluation.

• We investigate and quantify the effect of buffer size on
system energy mathematically and characterize the dom-
inating regions for each system parameter (e.g., buffer
size, θtar, N ) in terms of energy efficiency. We show
that increasing buffer size indefinitely does not help to
increase energy efficiency of the system for a fixed N
and θtar.

• The complexity of the proposed scheme is quite high for
large buffer size. Therefore, we propose and analyze the
low complexity solutions. The energy loss due to sub-
optimality is evaluated numerically, which reveals the
interesting result that the optimal and low complexity
schemes show comparable energy performance.

The rest of the paper is organized as follows. Section II
introduces the system model and fundamental assumptions. We
discuss and analyze the proposed scheme in Section III while
the optimization problem is formulated in Section IV. The
effect of buffer size on system energy is characterized mathe-
matically in Section V. We discuss low complexity schemes in
Section VI and compare them with our proposed scheme. We
provide numerical evidence of the tradeoff between energy, data
loss and buffer size for our schemes in Section VII and conclude
with the main contributions of the work in Section VIII.

II. SYSTEM MODEL

In this paper, we follow the system model used in [13], [18].
We consider a multiple-access system with K users randomly
placed within a certain area. The system is able to provide
a certain fraction of the total data rate to each user. Every
scheduled packet for a user k has normalized size Rk = C

K
where C denotes the spectral efficiency of the system.

We consider an uplink scenario where time is slotted such
that each user k experiences a channel gain hk(t) in a time
slot t. The channel gain hk(t) is the product of path loss
sk and small-scale fading fk(t). The path loss is a function
of the distance between the transmitter and the receiver and
remains constant within the time scale considered in this work.
Small-scale fading depends on the scattering environment. It
changes from slot to slot for every user and is independent and
identically distributed (i.i.d.) across both users and slots, but
remains constant during the time span of a single time slot. The
multi-access channel is described by the input vector (X) and
output vector (Y) relation as,

Y (t) =
K∑

k=1

√
hk(t)X(t) + Z(t) (1)

where Z represents additive i.i.d. complex Gaussian random
variable with zero mean and unit variance. The channel state
information (CSI) is assumed to be known at both transmitter
and receiver sides.

The continuity constraint requires us to allow scheduling of
multiple users simultaneously in the same time slot. If only a
single user is scheduled per time slot, the continuity constraint
cannot be satisfied without allowing outage when multiple users
have already dropped N packets. The analysis of the scheme
is based on asymptotic user case and therefore, scheduling of
very large number of simultaneous users is desirable. We use
superposition coding and successive interference cancelation
(SIC) mechanism for successful transmission of data (rate) of
simultaneously scheduled users.1 Treating the other users as
interference, we end up with a Gaussian channel for which
modulation and coding schemes are well researched, e.g., [19].

Let K denote the set of users to be scheduled and Φ1 · · ·Φ|K|
be the permutation of the scheduled user indices that sorts

1Theoretically, there is no limit on the number of users scheduled simultane-
ously if there is no power constraint. In practice, the users have peak or average
power constraints and apply finite modulation and coding schemes which limit
the number of users scheduled simultaneously.
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Fig. 1. The system model settings for the problem. The users make scheduling decisions independently based on the channel conditions and provide rate and
channel state information to a central controller which provides the required power allocation information to the users for superposition coding.

the channel gains in increasing order, i.e., hΦ1
≤ · · · ≤ hΦk

≤
· · · ≤ hΦ|K| . Then, the energy of the scheduled user Φk with
rate RΦk

, is given by, [18], [20]

EΦk
=

Z0

hΦk

(
2

∑
i≤k

RΦi − 2
∑

i<k
RΦi

)
(2)

where Z0 denotes the noise power spectral density. Fig. 1 shows
the block diagram for the system settings where a central
controller is responsible for providing the required power level
information to each user for superposition coding.

III. MODELING OF THE PROPOSED SCHEME

A constant arrival of a single packet with normalized size
C
K is assumed for simplicity. However, the scheme is not
restricted to this assumption as a random packet arrival process
can be modeled as a constant arrival process where multiple
arrived packets in the same time slot are merged as a single
packet with random packet size following the framework in
[6], [13]. The packet arrival occurs at the start of a time slot
and the scheduling is performed afterwards taking into account
the newly queued packet. All the arriving packets are queued
sequentially, i.e., the oldest arrived packet is the head of line
(HOL). If a single packet has to be scheduled or dropped, it
has to be the HOL packet. Note that successive packet drop
constraint inspires us to buffer and drop the packets sequentially
(as compared to any random queuing strategy) because it is
essential to maintain a sequence of the packets in the transmitter
buffer. The newly arrived packet is the pointer to indicate
how essential it is to transmit or drop a packet in relation to
successive packet drop constraint while the scheduling of the
other buffered packets is essential to maintain a ceratin average
packet drop rate.

The continuity constraint and buffer size parameters for a
user k are denoted by N and B, respectively; and assumed

to be identical for all the users.2 The variables d ≤ N and
b ≤ B denote the number of successively dropped and buffered
packets for a user k at time t, respectively. A packet arriving at
time t is not dropped immediately if not scheduled but buffered
up to B time slots and dropped then (if still not scheduled).

We use Markov decision process (MDP) to model and ana-
lyze the scheme which is a useful tool due to dependency of
the dropped packets in relation to the successive packet drop
sequences. The state space of the user is defined as

Λ = {(D,B);D ∈ {0, . . . , N},B ∈ {0, . . . B}} (3)

where D and B denote the state space for successive packet
drop and buffer states, respectively. Then, the state is defined as
a composite variable p ∈ Λ by the summation of the number of
(already) successively dropped and (already) buffered packets
at time t such that

p = d+ b. (4)

At the start of the Markov process (p = 0), the packet is not
dropped if not scheduled as packets can be buffered for B time
slots resulting in d = 0 and p = b for p ≤ B. When the buffer is
completely filled with packets, the unscheduled HOL packet is
dropped onwards. Note that, the dropping operation is limited
to a single packet as this is enough to make room for the newly
arrived3 packet at time t. Thus, the variable d increases and b
is fixed to B for p > B. The maximum number of states in our
Markov chain is B +N + 1 where M = B +N denotes the
termination state.

Let αpq denote the transition probability from a state p to
q with St representing the state at time t. Furthermore, we

2The framework can be generalized to non-identical N case for individual
users where N follows a probability distribution, but this is out of scope of
this work.

3The newly arrived packet waits in a separate temporary buffer momentarily
before the scheduling decision as it arrived at the start of the time slot.
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denote transition probabilities associated with the scheduling,
buffering and dropping decisions by the notation αs

pq , αb
pq and

αd
pq , respectively. We define αpq as

αpq=Pr(St+1=q|St=p)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
αs
pq ∀ p, q≤min(p,B)

αb
pq p<B, q=p+1

αd
pq p≥B, q=p+1

0 otherwise,

(5)

where possible values of the states form the finite state space Λ
of the MDP.

We define a scheduling threshold.
Definition 1 (Scheduling Threshold κpq): It is defined as the

minimum small scale fading value fk required to make a state
transition from state p to q such that

αs
pq = Pr

(
κpq < fk ≤ κp(q−1)

)
0 ≤ q ≤ min(p,B), (6)

where κp0− is defined to be infinity with S0− denoting a dummy
state before S0.

Thus, the small scale fading must be greater than κpq for the
process to enter in state q where fading vector is quantized in
non-overlapping intervals. The threshold definition uses fading
instead of channel gain to avoid near-far effect which gives
unfair advantage to the users near the base station.

A. The Proposed Scheduling Scheme

We assume an infinitely large number of users in the system
for the analysis purpose. This assumption makes the analysis of
the scheme tractable which is hard otherwise due to multiuser
interactions. In the large user limit, the scheduling decisions of
the users decouple and the multiuser system can be modeled as
a single user system following the work in [13], [21]. Every user
makes his own scheduling decision independent of the other
users.

The purpose of the scheduling scheme is to maximize the use
of available fading conditions by scheduling as many packets
as possible. Thus, the fading vector is quantized in such a way
that the discrete set of state-dependent scheduling thresholds
determine the intervals for the optimal scheduling decisions and
the size of this vector equals the number of packets available for
scheduling in a state p.

In a state p ≥ q, the scheduler makes a state transition to state
q for fading fk such that

κpq < fk ≤ κp(q−1), 0 ≤ q ≤ min(p,B). (7)

For a state transition αs
pq with q ≤ min(p,B), the number of

the scheduled packets is given by

L(p, f) = min(p,B)− q + 1, (8)

where q is determined uniquely by (7). Obviously, a user can
only schedule as many packets as buffered. Thus, the maximum
scheduled packets for a state p < B are limited to p− q + 1
(due to constant arrival model) while they are fixed to B − q +
1 for p ≥ B.

Note that scheduling of packets starts with the HOL packet
and ends with the most recently arrived packet. Given a state
p, (7) chooses q which maximizes the average system reward.
To meet the continuity constraint with probability one, κMB is
set to zero to allow transmission of the HOL packet in state M ,
similar to the approach used in [22].

We deduce the following properties of the proposed schedul-
ing scheme from (7).

Property 1: The next state (in case of scheduling) is limited
by the minimum of p and B. If p ≤ B, q cannot exceed p,
otherwise it is limited to B.

Thus, up to min(p,B) buffered packets and one newly ar-
rived packet can be scheduled depending on small scale fading
in a state p. As the quantity min(p,B) is used extensively in the
analysis, we denote it by μ in the rest of the paper.

Property 2: Scheduling thresholds in a state p follow the
monotonic decrease property that

κpq < κp(q−1), ∀ p, 0 ≤ q < μ. (9)

Property 3: For a state transition resulting in the scheduling
of the same number of packets,

κpq ≤ κ(p−1)(q−1), ∀ p, 0 ≤ q < μ. (10)

The closer to termination state, the smaller the thresholds
and the larger the energy expenditure. This follows from the
classical optimal stopping theory formulation where expected
incentive in waiting decreases monotonically [22].

If f ≤ κpμ, no scheduling occurs. In this case, the next state q
equals p+ 1 but a packet can be dropped or buffered depending
on the conditions in (11) and (12) such that

αb
p(p+1) = Pr(f ≤ κpp) = 1−

p∑
q=0

αs
pq, p < B. (11)

κpp denotes the minimum threshold for self transition to sched-
ule at least one packet. If p < B, the unscheduled HOL packet
is buffered with the option that it can be scheduled in one of the
B − p time slots in future.

αd
p(p+1) = Pr(f ≤ κpB) = 1−

B∑
q=0

αs
pq, p ≥ B, (12)

where κpB denote the minimum thresholds to make transition
to state B for scheduling at least one packet. If p > B, the
unscheduled HOL packet has to be dropped as the buffer is
already full. The best option by continuity constraint point of
view is to drop HOL packet to make room for the newly arrived
packet.

The state transition probabilities are computed as a function
of scheduling thresholds via (6), (11) and (12), and depend
on the fading distribution and QoS parameters (N,B, θtar).
The state transition probabilities constitute the state transition
probability matrix Q for an MDP.

To explain the computation of matrix Q, consider the state
diagram in Fig. 2 for different values of N and B parameters.
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Fig. 2. State transition diagrams for different buffer size and continuity constraint parameters. The green colored states represent the buffering states while grey
state is the Mth state. The superscript notation with transition probabilities depict the actions associated with the transitions. (a) N=2, B=1; (b) N=1, B=2.

The corresponding matrix Q for a system with N = 1 and
B = 2 is given by

Q =

⎛
⎜⎜⎝

αs
00 αb

01 0 0
αs
10 αs

11 αb
12 0

αs
20 αs

21 αs
22 αd

23

αs
30 αs

31 αs
32 0

⎞
⎟⎟⎠ . (13)

Appendix A shows the general relation between matrix Q
and scheduling thresholds for a small scale fading distribution
pf (y).

It should be noted that the number of states in an MDP are the
same for the parameter sets N = 2, B = 1 and N = 1, B = 2
but the transition probability matrix Q differs and captures the
effect of each parameter on the system energy. The parameter
set N = 2, B = 1 requires optimization of 2 thresholds per
state for p ≥ 1 while the parameter set N = 1, B = 2 requires 3
thresholds per state for p ≥ 2. We evaluate the energy efficiency
of both cases numerically in Section VII.

IV. OPTIMIZATION PROBLEM FORMULATION

The number of scheduled packets are considered virtual
users (VU) for the analysis purpose. It is known that the
average energy consumption of the system per transmitted
information bit at the large system limit K → ∞ is given by
[13], [18]

(
Eb

N0

)
sys

= log(2)

∞∫
0

2C Ph,VU(x)

x
dPh,VU(x) (14)

where Ph,VU(·) denotes the cumulative distribution function
(cdf) of the fading of the scheduled VUs. It comprises of the
small scale fading and the path loss components of the VUs.
However, in the large system limit, the state transitions depend
only on the small scale fading distribution as the path loss for
VUs follows the same distribution as the path loss of the users.

The optimization problem is to minimize system energy for
the target average and successive packet drop constraints. We
formulate the problem with the help of MDP model described
in Section III and optimize the state transition probabilities (or
resulting Q) offline.

Consider the following optimization problem:

minQ∈Ω

(
Eb

N0

)
sys

(15)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C1 : 0≤

∑μ
m=0 αpm≤1 0≤αpm ≤ 1, 0 ≤ p ≤ M

C2 : θr≤θtar Q∈Ω

C3 :
∑M

q=0 αpq = 1 0≤p≤M

C4 : B+N=M B<∞, N <∞,

(16)

where Ω denotes the set of permissible matrices for Q. Note
that θtar is the target (maximum) average packet drop rate while
θr is the average packet drop rate resulting from our proposed
scheme and any fixed Q according to (16) such that

θr =

M−1∑
p=B

αp(p+1)πp =

M−1∑
p=B

(
1−

μ∑
m=0

αpm

)
πp. (17)

Equation (17) results by combining C1 and C3 in (16) while πp

denotes the steady state probability of the state p and follows
the property of homogenous Markov Chain that:

M∑
p=0

πp = 1. (18)

In our MDP model, the forward transition for the state p ≥ B
represents the events of dropping the packet in state p and
the summation over the corresponding transition probabilities
αp(p+1) gives the average dropping probability θr. The sum-
mation in (17) starts from state B as the unscheduled packets
are buffered for p < B.

The constraint on average packet drop rate is modeled by C2
in (16). The constraint on successive packet drop is modeled
through C4 while C1 and C3 are the standard constraints on
the transition probabilities. For a fixed p, the corresponding
channel-dependent optimal scheduling thresholds can be com-
puted from the optimized �α∗

p = [α∗
p0, . . . α

∗
pμ] using (6).(

Eb

N0

)
sys

in (14) requires computation of channel distribution

for the scheduled users. From our MDP model for the problem,
the probability density function (pdf) of the small scale fading
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of the scheduled VUs is computed as a function of the opti-
mized scheduling thresholds by

pf,VU(y) =

M∑
p=0

cpL(p, y)πp pf (y), κpq < y ≤ κp(q−1)

(19)

where pf (y) and cp denote the small scale fading distribu-
tion and a normalization constant while L(p, y) is given by
(8). The pdf represents the conditional probability of being
in state p and transmitting L(p, y) packets for small sale
fading y.

The cdf of the VUs can be written as a sum of integrals

Pf,VU(y) =

M∑
p=0

cpπp

⎛
⎜⎝L(p, y)

y∫
κpq

pf (ξ)dξ

+

μ−q∑
b=1

b

κp(μ−b)∫
κp(μ−b+1)

pf (ξ)dξ

⎞
⎟⎠ (20)

=
M∑
p=0

cpπp

(
L(p, y)Pf (y)−

μ−q∑
b=0

Pf (κp(μ−b))

)
, (21)

since no virtual users are scheduled for y < κpμ. The chan-
nel distribution for the scheduled VUs is computed in close
form for Rayleigh fading and the path loss distribution in
Appendix B.

A. Heuristic Optimization

The optimization problem is to compute a set of transition
probabilities that result in minimum system energy in (14).
For every state p, an optimal �α∗ = [α∗

p0, . . . α
∗
pμ] needs to be

computed. The computation of optimal �α∗ under constraints in
(16) is a stochastic optimization problem and requires heuristic
optimization techniques like genetic algorithms, neural net-
works, etc., which provide acceptable solutions with reasonable
computational complexity.

We choose Simulated Annealing (SA) to compute the so-
lution for the optimization problem. SA is believed to help
avoiding local minima by probabilistically allowing a candidate
configuration to be the best known solution temporarily even
if the configuration is not the best available solution at that
time. This is called muting. The muting occurs at a faster rate
at the start of the optimization process and decreases as the
process goes on. This behavior is analogous to first heating at
high temperature and then cooling the object. There are many
cooling schedules used in literature, e.g., Boltzmann annealing
(BA) and Fast annealing (FA) schedules, etc., [23], [24]. We
employ FA in this work. In FA, it is sufficient to decrease the
temperature linearly in each step j such that,

Tj =
T0

csaj + 1
(22)

where T0 is a suitable starting temperature and csa is a constant
adjusted according to the requirements of the problem.

Algorithm 1 shows the pseudocode for application of SA
to our optimization problem at a single temperature iteration.
The MDP models the problem for finite B,N while the matrix
Q represents a candidate configuration for SA. In SA, one
transition probability fulfilling C1 − C4 (in (16)) in Q̂ is var-
ied randomly in a single iteration and the objective function,(

Eb

N0

)
sys

in (14), is computed only if the constraint C2 is

satisfied. If the solution improves the previous best solution,
the new configuration, i.e., the proposed Q̂, is selected as the
current best solution, discarded otherwise. However, with a
certain probability, the new matrix Q̂ can be selected as the
best solution even if it does not improve the previous best
solution. This helps to avoid local minima as explained earlier.
After n iterations, the temperature is lowered down according
to (22) and the routine is repeated untill the temperature reaches
its lower limit and the computed end solution is considered
optimal. We omit the details of SA scheme here due to space
limitations but the reader is referred to [25], [26] for the details
of SA algorithm.

V. CHARACTERIZATION OF BUFFER SIZE

In this section, we characterize the effect of buffer size on
system energy. For a fixed N , an increase in buffer size B
causes increase in quantization levels for (per state) fading
vector. Larger the quantization levels, the better the use of fad-
ing to improve energy consumption in our scheduling scheme.
Technically, larger the buffer size, the more is the waiting time
for a specific packet to wait for an optimal time slot to get
scheduled. This result follows directly from the finite horizon
optimal stopping theory.
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To characterize the effect of buffer size on our scheme, we
compare two systems with equal N : a system with no buffering
and a system with buffer size B. As M = N +B, denoting
continuity constraint parameter for a zero buffer system by Ń
implies Ḿ = Ń and (17) reduces to

θr =
Ń−1∑
p=0

αp(p+1)πp. (23)

Eq. (23) for B = 0 is identical to (17) for a system with B > 0
in terms of number of states summed over as B is added in both
upper and lower limits to get (17). The only difference between
the two systems emerges from the fact that a proportion of
the packets for a buffering system is scheduled before reaching
state B in MDP. Let λB denote the effective rate of unscheduled
packets entering state B (as compared to one in case of no
buffering) and given by

λB = α(B−1)BπB−1 = 1−
B−1∑
p=0

p∑
q=0

αpqπp (24)

The increased energy efficiency in the system with buffering is
due to the packets scheduled in first B (0 to B − 1) states as
explained in the following.

1) The packets scheduled in first B states help to reduce
the number of packets to be scheduled in the remaining
N states while θtar is the dropping rate for the packets
entering the system. As a fraction 1− λB of the packets
is scheduled before state B, a larger proportion of the
remaining packets can be dropped in remaining N (B
to M ) states to meet θtar as compared to the system
without buffering which increases DoF and helps to re-
duce system energy. Thus, due to scheduling in additional
B states, the resulting system energy for the dropping
probability θtar and buffer size B is equivalent to the sys-
tem energy for the case B = 0 and dropping probability
θtar/λB . In numerical results, we quantify that the energy
gain due to factor θtar/λB provides a lower bound for the
improvement as additional gain is achieved in scheduling
in first B states as explained below.

2) The packets scheduled in first B states result in smaller
average Eb/N0 as compared to average Eb/N0 in the
remaining N states. This follows from Property 3 and
(10). An increasing scheduling threshold implies smaller
energy consumption in the scheduled packets in first B
states.

A. Limiting the Buffer Size

In practice, the continuity constraint parameter values are of
the order of a few tens. Our results in Section VII show that
increasing the value of B for a fixed N results in a decrease of
energy. Naturally, one would like to have a large value for B
to maximize the energy gain. However, B cannot be increased
indefinitely due to the following phenomenon.

For a fixed N , the system energy saturates at some θlim =
θtar and θtar > θlim does not improve the energy efficiency

(c.f. Lemma 1 in [13] as reviewed briefly in Appendix C) where
θlim is the solution of (15) without applying C2 in (16). In
the following, we study the effect of buffer size B on this
particular parameter. We observe from the numerical results
that increasing B for a fixed N shifts θlim towards zero average
dropping probability, i.e., increasing B further does not help to
increase the system energy efficiency significantly.

We deduce the following Lemma based on our evaluation.
Lemma 1: There exists a value of B that maximizes the

energy gain via buffering for a fixed N . It is independent of
θtar and denoted by Bm(N).

Proof: We obtain θlim = θr from the solution of the
problem solely constrained by the continuity constraint, i.e.,
by solving (16) without constraint C2 for forward transition
probabilities αp(p+1) for B ≤ p ≤ M − 1. As B increases with
respect to N , the steady state probabilities πp for B ≤ p ≤
M − 1 decrease because a buffered packet gets B opportunities
to exploit multiuser diversity before it gets dropped if not
scheduled. From (17), θlim depends on πp for B ≤ p ≤ M − 1
as well, i.e., θlim(πB , πB+1, . . . , πM−1). If one component
πB , πB+1, . . . , πM−1 is decreasing, θlim decreases for a fixed
N , i.e., ∂θlim(πB ,πB+1,...,πM−1)

∂πl
≥ 0 for B ≤ l ≤ M − 1. Even-

tually θlim → 0 for B/N 	 1. �
Thus, parameter N constrains B via Lemma 1. However,

this maximization is achieved at θlim = 0 which implies that
the value of θtar and N is irrelevant as it is not permissible
to drop any packet regardless of N . Therefore, the value of
B < Bm(N) should be designed such that the DoF available
from N and θtar can be utilized effectively to improve the
system energy efficiency in conjunction with parameter B.

VI. SUBOPTIMAL SCHEDULING SCHEMES

The computational complexity of the scheme depends on
the number of quantization levels (thresholds) per state which
in turn depend on buffer size. In practice, the buffer size
is of the order of a few tens to hundreds. In this case, the
“Best”4 scheduler presented in our work results in computa-
tional complexity (for the thresholds) of the order O(MB) and
in the case B 	 N , it becomes O(B2). In the following, we
propose suboptimal schedulers which reduce the complexity at
the marginal energy loss. These schedulers exploit non-uniform
distribution of transition probabilities in the original optimal
scheme. For every state p, the original scheduling scheme is
based on the idea of allowing scheduling of multiple packets
for opportunistic use of good channels.

However, the computational complexity can greatly be re-
duced by merging some of the transition probabilities in a
smart way. All the suboptimal schemes share one property that
scheduling of at least one packet per state must be facilitated
to maximize the satisfaction of continuity constraint before
reaching M th state. Note that the forced transmission in M th

time slot results in large energy expenditure.

4Please note that we avoid using term optimal as the solution of the scheme
presented in Section III cannot be proven optimal in the mathematical sense. To
differentiate this scheme with low complexity schemes, we term the scheme as
“Best” in the subsequent work.
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A. One-or-All Scheduler

This scheduler is the simplest in terms of computational
complexity and implementation. Instead of having the option
of scheduling up to μ+ 1 packets in a state p, the user is
limited to schedule either one, μ+ 1 or no packet at all, thereby
this scheme is called One-Or-All (OOA) scheduling. All other
transition probabilities are set to zero. The idea is motivated by
the emptying buffer scheme in [6] where a user either empties
the buffer when scheduled or waits for the next time slot. The
computational complexity for this scheme is O(B) for B/N 	
1 as only 2B transition probabilities need to be optimized.

Following the derivation in (21), the cdf of the VUs for OOA
is given by

Ṕf,VU(y)=

M∑
p=0

cpπp

⎧⎪⎨
⎪⎩
(μ+ 1)Pf (y)−
μPf (κp0)− Pf (κpμ) y > κp0

Pf (y)−Pf (κpμ) κpμ<y≤κp0.
(25)

B. Selective State With Exponential Merging (SSE)

As OOA scheduler quantizes every channel state into 2
levels per state, the performance is expected to degrade rapidly
as compared to the “Best” one. A tradeoff between OOA
and the “Best” scheduler is Selective State with Exponential
merging (SSE) scheduler with complexity O(B logB). Out of
the possible state transitions, one state transition is dedicated
for allowing scheduling of a single packet to maximize the
probability of meeting the continuity constraint after dropping
N packets successively. Thus, the non-zero probability for the
state transition from state p to μ is a must for every state
p. For the selection of other possible state transitions, we
propose the following method where we choose thresholds
exponentially.

For a state p, we observe in transition probability matrix for
the “Best” scheme that the state transition probabilities are quite
high for state zero, state p and the states which are closer to
zero. Therefore, other than αpμ (as in OOA), a natural choice
of allowed transition probabilities is as follows.

For a state p, select a vector of possible next states by

�q =
[
20 − 1, 21 − 1 . . . 2
log2(μ+1)� − 1, μ

]
(26)

where the state transition from p to μ is appended in the
end only if it is not already contained by the vector, i.e.,
2
log2(μ+1)� − 1 �= μ. The next states for the state transitions
are more concentrated for the states with small q and sparsity
increases exponentially following our observation for the tran-
sition probability matrix for the “Best” scheme. Please note that
smaller q implies transmission of more packets and vice versa.
The loss in merging states with large q is small as compared to
merging states with small q.

For this scheme, the corresponding state transition matrix
QSSE for a system with N = 2 and B = 3 is given by

QSSE=

⎛
⎜⎜⎜⎜⎜⎜⎝

αs
00 αb

01 0 0 0 0
αs
10 αs

11 αb
12 0 0 0

αs
20 αs

21 αs
22 αb

23 0 0
αs
30 αs

31 0 αs
33 αd

34 0
αs
40 αs

41 0 αs
43 0 αd

45

αs
50 αs

51 0 αs
53 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (27)

The general closed form expression for computation of VUs’
channel distribution in terms of p is not straight forward due
to its dependency on vector �q. For every p in matrix QSSE, the
general form of the expression varies and can be derived using
the derivation technique explained in Section III for the “Best”
scheme. Thus, for every p, corresponding �q is computed using
(26) which determines the channel distribution as follows:

The channel distribution of VUs for SSE is conditioned on
state p (as before) and given by

P̌f,VU(y) =
M∑
p=0

cpπpPf (y|p) (28)

where Pf (y|p) in turns is conditioned on �q such that:

For |�q| = 1,

Pf (y|p) = Pf (y)− Pf (κpμ) y > κp0 (29)

For |�q| = 2,

Pf (y|p) =

⎧⎪⎨
⎪⎩
(μ+ 1)Pf (y)− Pf (κp0) y > κp0

−Pf (κp1)

Pf (y)− Pf (κpμ) κpμ < y ≤ κp0

(30)
For |�q| = 3,

Pf (y|p)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(μ+1)Pf (y)−Pf (κp0) y > κp0

−(μ−1)Pf (κp1)−Pf (κpμ)

μPf (y)−(μ−1)Pf (κp1) κp1<y≤κp0

−Pf (κpμ)

Pf (y)−Pf (κpμ) κpμ<y≤κp1.
(31)

Following the proposed framework, channel distribution can
be calculated for all |�q|, p.

VII. NUMERICAL EVALUATION

In this section, we provide some numerical examples to
demonstrate the potential gain of our scheme. K users are
uniformly distributed in a circular cell except a forbidden region
of radius δ = 0.01 around the access point and the path loss
follows the distribution in [13], [18]. We assume Rayleigh
fading with mean one and the path loss is exponential with
exponent 2. The value of C is fixed to 0.5 bits/s/Hz.

First, we present an example of numerically computed Qbst

matrix for the “Best” scheme. The matrix is a function of
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Fig. 3. The system energy as a function of average packet dropping probability
and buffer size parameters for a fixed N . The values for θlim have been pointed
with elliptical shapes for every curve.

scheduling thresholds as computed in Appendix A. For ex-
ample, we have the following matrix for N = 2, B = 1 and
θtar = 0.02.

Qbst =

⎛
⎜⎜⎝
0.69 0.31 0 0
0.76 0.17 0.07 0
0.67 0.27 0 0.06
0.64 0.36 0 0

⎞
⎟⎟⎠ (32)

We show system energy against target average packet drop
probability in Fig. 3 and focus on the effects of buffering
on a system constrained by parameters θtar, N . For a fixed
N , the system becomes more energy efficient as B increases
due to the effects characterized in Section V. For the case
B = 1, N = 1, θtar = 0.02, the parameter θtar/λB equals 0.09
from the matrix in (32). This implies a system with buffer size
one and θtar = 0.02 is more energy efficient than a system
with B = 0 and θtar = 0.09 as evident from Fig. 3. Thus,
flexibility in latency requirements helps to combat the trans-
mission challenges emerging from the finite packet dropping
parameters. We observe also that the energy expenditure for
the parameters B = 2, N = 1 is substantially smaller than the
case with parameters B = 1, N = 2 (where M = 3 for both
cases) at small θtar, but the opposite holds at large θtar. Thus,
it is important to realize the operating region for the system to
maximize the advantage from DoFs.

As evident from Fig. 3, an increase in value of B results in
decrease in the value of θlim as explained in Lemma 1. In this
particular numerical example, Bm(N) = 6 for N = 1. How-
ever, allowing B = 6 is not beneficial from the energy point of
view as no packet loss tolerance is exploited. If the system is
loss tolerant in terms of average packet drop rate, B < Bm(N)
can be designed to maximize the energy efficiency without
wasting extra buffer (cost). For example, for θtar = 0.05 and
N = 1, B = 3 realizes nearly the same energy as for the cases
B > 3 at the reduced cost of buffering.

Fig. 4 exhibits the effects of different combinations of param-
eter sets B,N and θtar on the system energy in a 3-dimensional
plot where the effect of each parameter in different operating
regions is evident. Fig. 4(a) for parameter θtar = 0 is a special

case where N becomes irrelevant as zero average packet drop
rate implies that the system is lossless and thus, N > 0 does not
help (as no packet can be dropped). However, if θtar = 0, an
increase in the value of B does help to make the system energy
efficient as shown in Fig. 4(b). A system with parameters
B = 2, N = 1, θtar = 0 is almost as energy efficient as a sys-
tem with B = 1, N = 1 and θtar  0.05, i.e., with an additional
freedom in average dropping probability.

To measure the relative accuracy of the computed solution
for the SA algorithm, we define a parameter Δ by

Δ = 1− θ∗r
min(θtar, θlim)

(33)

where θ∗r is computed for a given θtar by using (17) for the
“Best” solution Q∗. This measure specifies how close θ∗r for the
solution to the targeted maximum value of average packet drop
is. Though, it is not true always that the smaller Δ guarantees
more energy efficiency as there exist some combinations of
transition probabilities which result in smaller θr but larger
energy. A small Δ implies that the computed solution is
sufficiently exploiting the DoF inherited by the system through
parameter θtar.

Fig. 5 shows Δ for different combinations of parameters B
and N . We observe that Δ is quite small for the computed
solutions for the “Best” scheme. As SA is a heuristic algorithm,
there is no consistent pattern in the values of Δ. In general, for
a fixed number of temperature iterations, the computation of the
solution is expected to be hard as the number of parameters in-
volved increases, i.e., dense Q and large number of thresholds.
If Δ is large for a parameter set, the number of iterations are
increased to improve the solution.

Table I illustrates the comparison between the ‘Best’ and
low complexity sub optimal schemes. Note that all the schemes
fulfill the continuity and average packet drop constraints ef-
fectively. As expected, OOA is the least complex scheme but
energy loss is substantial as compared to the “Best” one at
θtar = 0.10. The SSE scheme is more complex than OOA; but
improves energy performance over OOA while energy loss is
minimal as compared to the “Best” one.

Fig. 6 compares the system energy and achieved average
packet drop rate θr for the “Best” and OOA schemes against
a target average dropping probability. At low θtar both schemes
are indistinguishable as DoF provided by θtar for N = 3 and
B = 3 is too small to be capitalized effectively by any scheme.
As θtar increases, the “Best” scheme shows better results than
OOA as expected. However, for large θtar, OOA outperforms
the “Best” one surprisingly. This is attributed to the fact that
reduced complexity (less number of thresholds) of OOA helps
to compute more accurate matrix Q∗

OOA (via SA) as compared
to the “Best” scheme where Q∗

bst is dense. This effect is more
pronounced at large θtar due to more freedom in choosing
transition probabilities in matrix Q∗.

To verify our observations numerically, we repeat the opti-
mization by increasing number of iterations per single temper-
ature from 100 to 200. We also plot the achieved θr for both
schemes in Fig. 6(b). Initially, θr follows θtar closely for both
schemes. It is clear that θr for OOA is much closer to θtar in the
regionwhenOOAoutperformsthe“Best”scheme.Atθtar=0.15,
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Fig. 4. The system energy as a function of parameters B,N and θtar in 3-dimensional illustrations. (a) θtar = 0; (b) θtar = 0.05.

Fig. 5. The accuracy measure Δ[%] as a function of buffer size and continuity
constraint parameters while θtar = 0.05 for all simulations. The number of
temperature iterations are 100 while 50 ∗ (M + 1) random configurations of
Q are simulated at one temperature. The value of initial temperature T0 can be
fixed according to the problem requirements.

TABLE I
COMPARISON OF SCHEMES FOR N = 3, B = 3, C = 0.5 bits/s/Hz

increase in number of iterations in SA algorithm from 100
to 200 improves accuracy of Q∗ (and thus system energy in
Fig. 6(a)) for the “Best” scheme while it has negligible effect on
OOA scheme as θr for OOA was already close to θtar. Thus, we
conclude that the proposed low complexity schemes perform
very close to the “Best” scheme and extensive fading vector
quantization levels for the “Best” scheme do not help much.

VIII. CONCLUSION

We investigate the tradeoff between the system energy of
multiuser multi-access system and the packet drop tolerance of
the applications characterizing the network traffic. In contrast
to common approach of dropping a packet as a consequence
of failing to provide a required rate to the users, we propose

maximizing the use of packet drop tolerance by dropping as
many packets as permissible without compromising the QoE
for the users. The joint constraint on permissable average and
successive packet drop poses interesting challenge in the opti-
mization problem. We propose a packet scheduling scheme and
analyze it using MDP under large user limit. As the formulated
optimization problem is non-convex for a multiuser system,
the heuristic solution is presented. We also propose suboptimal
low complexity schemes which show negligible energy loss
as compared to the proposed “Best” scheme. The numerical
results evaluate trade-offs between the system energy and QoS
parameters. The study reveals that system energy is influenced
by different parameters in different operating regions and it is
important to quantify the effect of each parameter to oppor-
tunistically make use of the channel for an energy efficient
system design. In future work, we consider the proposed frame-
work in more realistic scenarios when CSI is not available
and only statistical guarantees can be provided on successive
packet loss.

APPENDIX A
RELATION BETWEEN THRESHOLDS AND

TRANSITION PROBABILITIES

There is one to one mapping between transition probabilities
and thresholds. For a given set of parameters B,N and small
scale fading distribution Pf (y), the transition probabilities are
a function of the scheduling thresholds. Therefore, computing
a set of thresholds is equivalent to the computation of a set of
transition probabilities.

For a fixed M = B +N (assuming B ≥ 1), the transi-
tion probability matrix Qbst for the “Best” scheme in is ex-
pressed as,

Qbst

=

⎛
⎜⎜⎜⎝

Pr(y ≥ κ00) Pr(y < κ00) · · · 0
Pr(y ≥ κ10) Pr(κ11≤y<κ10) · · · 0

. . .
. . .

. . .
. . .

Pr(y ≥ κM0) Pr(κM1≤y<κM0) · · · 0

⎞
⎟⎟⎟⎠

(34)
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Fig. 6. The comparison of the “Best” scheme against suboptimal low complexity OOA scheme. The simulation parameters are B = 3, N = 3. Note that the
curves for both schemes with 200 iterations per temperature value are overlapping with OOA curve with 100 iterations and are hardly distinguishable. (a) Eb/N0

for the “Best” and OOA schemes for Rayleigh fading distribution. (b) θr for the “Best” and OOA schemes for Rayleigh fading distribution.

where zero transition probability represents the impossible
transition.

APPENDIX B
CHANNEL MODELING

In this work the channel model of [13], [18] is used. Signal
propagation is characterized by a distance dependent path loss
factor and a frequency-selective short-term fading that depends
on the scattering environment around the user terminal. As
described in Section II, these two effects are taken into account
by letting hk = skfk.

As in [18], we assume that users are uniformly distributed
in a geographical area but for a forbidden circular region of
radius δ centered around the base station where 0 < δ ≤ 1 is a
fixed system constant. Using this model, the cdf of path loss is
given by

Fs(x) =

⎧⎨
⎩

0 x < 1

1− x−2/α−δ2

1−δ2 1 ≤ x < δ−α

1 x ≥ δ−α

(35)

where the path loss at the cell border is normalized to one.
For a Rayleigh channel, the distribution of small scale block

fading is given by

Pf (y) = 1− exp(−y) (36)

Ph(x) is defined as the cdf of the random variable hk = skfk.
Recall from (21), the cdf Pf,VU(y) of VUs for the “Best”
scheme is a weighted function of the cdf of actual fading
Pf (y) given by (36). Using (21) and (35), we compute a
convenient expression for the cdf Ph,VU(x) of the VUs for
this product channel. As path loss and Rayleigh fading occur
simultaneously and independently, the cdf of the channel gain is
given by

Ph,VU(x) =

∫
Fs (x/y) dPf,VU(y). (37)

Using path loss distribution in (35), (37) is computed as follows

Ph,VU(x) =

∫ xδα

0

pf,VU(y)dy +

∫ x

xδα
Fs (x/y) dPf,VU(y)

(38)

Following the derivation in [13], changing variables and
integrating by parts yields,

Ph,VU(x) =
1

x2/α(1− δ2)

∫ x2/α

x2/αδ2
Pf,VU

(
yα/2

)
dy. (39)

For α = 2, (39) can be written in closed form.
For the “Best” scheduler, using (21) and the Rayleigh fading

model, (39) is given by

Ph,VU(x) =
1

x(1− δ2)

∫ x

xδ2

M∑
p=0

cpπp

[
L(p, y)

× (1− exp(−y))−
μ−q∑
b=0

(
1− exp

(
−κp(μ−b)

)) ]
dy. (40)

Integrating (40) yields

Ph,VU(x) =
M∑
p=0

cpπp

[
L(p, y)

(
1 +

1

x(1− δ2)
(exp(−x)

− exp(−xδ2)
))

−
μ−q∑
b=0

(
1− exp

(
−κp(μ−b)

)) ]
. (41)

Similarly, the channel distribution of VUs for OOA and SSE
schedulers can be computed using (25) and (28), respectively
in (39).
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APPENDIX C
REVIEW OF LEMMA IN [13]

The behaviour of system energy for a fixed N and large θtar
has been characterized by a Lemma in [13]. We review the
Lemma briefly here to keep this work independent and self-
sufficient. The lemma states:

For a fixed continuity constraint parameter N , there exists
a finite θlim such that for all θtar > θlim, the same maximum
energy efficiency is achieved as for more restrictive θlim.

We evaluate (17) from Q∗ to get the resulting average
dropping probability θ∗r. For a fixed N , we will not be able
to achieve further energy efficiency by dropping more packets
for any θtar > θlim. The θ∗r value for the special case is termed
as limiting average dropping probability and denoted by θlim
when we have no average packet dropping constraint but only
continuity constraint. Equivalently, θlim is the solution of (15)
without applying C2 in (16).
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