67 research outputs found

    Distinct expression profiles of TGF-β1 signaling mediators in pathogenic SIVmac and non-pathogenic SIVagm infections

    Get PDF
    BACKGROUND: The generalized T-cell activation characterizing HIV-1 and SIVmac infections in humans and macaques (MACs) is not found in the non-pathogenic SIVagm infection in African green monkeys (AGMs). We have previously shown that TGF-β1, Foxp3 and IL-10 are induced very early after SIVagm infection. In SIVmac-infected MACs, plasma TGF-β1 induction persists during primary infection [1]. We raised the hypothesis that MACs are unable to respond to TGF-β1 and thus cannot resorb virus-driven inflammation. We therefore compared the very early expression dynamics of pro- and anti-inflammatory markers as well as of factors involved in the TGF-β1 signaling pathway in SIV-infected AGMs and MACs. METHODS: Levels of transcripts encoding for pro- and anti-inflammatory markers (tnf-α, ifn-γ, il-10, t-bet, gata-3) as well as for TGF-β1 signaling mediators (smad3, smad4, smad7) were followed by real time PCR in a prospective study enrolling 6 AGMs and 6 MACs. RESULTS: During primary SIVmac infection, up-regulations of tnf-α, ifn-γ and t-bet responses (days 1–16 p.i.) were stronger whereas il-10 response was delayed (4(th )week p.i.) compared to SIVagm infection. Up-regulation of smad7 (days 3–8 p.i.), a cellular mediator inhibiting the TGF-β1 signaling cascade, characterized SIV-infected MACs. In AGMs, we found increases of gata-3 but not t-bet, a longer lasting up-regulation of smad4 (days 1–21 p.i), a mediator enhancing TGF-β1 signaling, and no smad7 up-regulations. CONCLUSION: Our data suggest that the inability to resorb virus-driven inflammation and activation during the pathogenic HIV-1/SIVmac infections is associated with an unresponsiveness to TGF-β1

    Inflammatory control in AIDS-resistant non human primates

    Get PDF
    International audienceAfrican non human primates are natural hosts of SIV. The infection is non-pathogenic despite plasma viral load levels similar to those in HIV-1 infected humans and SIVmac-infected macaques (MAC) progressing towards AIDS. The most striking difference between non-pathogenic SIV and pathogenic HIV-1/SIVmac infections is the lack of chronic T cell activation in natural hosts. In HIV and SIVmac infections, chronic T cell activation is known to drive CD4+T cell depletion. Intense research efforts are worldwide put on the search of the mechanisms that can control chronic T cell activation in HIV/SIV infections. Innate immune responses play a determinant role in the regulation of T cell activation profiles. Type I interferons (IFN-I) are part of the first-wave response of the innate immune system in viral infections. We compared the IFN-I responses between pathogenic (MAC) and non-pathogenic SIV infections (African Green monkey, AGM) at the level of blood and lymph nodes (LN) during the early and chronic stage of infection. During the acute SIVagm infection, we detected high amounts of IFN-α in the plasma of AGMs, although the mean levels at the peak were three times lower than in MAC. The microarray data revealed a rapid and strong up-regulation of type I Interferon-Stimulated Genes (ISG) in AGMs during acute SIVagm infection. ISGs denote the in vivo activity of IFN-I. Using a functional assay, we demonstrated that low IFN-α concentrations (50 times lower than the IFN-α levels in plasma at the peak) were sufficient to induce strong ISG responses in AGM and MAC cells. Surprisingly, our direct comparison of blood and LNs showed that ISG induction was broader in blood of AGMs than in MAC, while in LN, it was the contrary. Thus, in AGMs, less ISG were induced in LNs as compared to MAC already during the acute phase of infection. Moreover, our tight kinetic analysis showed that this ISG expression was efficiently controlled after day 28 post-infection in AGMs, while in MAC the ISGs expression remained uncontrolled. Finally, we identified genes that were differentially expressed between the two species and which might be involved in the discriminating responses. Altogether, this shows that AGMs are capable to mount a well coordinated and efficient regulative response to innate immune activation

    In Vitro Surfactant Structure-Toxicity Relationships: Implications for Surfactant Use in Sexually Transmitted Infection Prophylaxis and Contraception

    Get PDF
    Background The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs) makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. Methodology/Principal Findings We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants – nonionic (Triton X-100 and monolaurin), zwitterionic (DDPS), anionic (SDS), and cationic (CnTAB (n = 10 to 16), C12PB, and C12BZK) – were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC) suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C12PB and C12BZK, does not justify their use as contraceptive agents. C12PB and C12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. Conclusions/Significance Our results contribute to understanding the mechanisms involved in surfactant toxicity, have a predictive value with regard to their safety, and may be used to design more effective and less harmful surfactants for use in topical applications for STI prophylaxis.Foundation for Science and Technology of the Portuguese Ministry of Science and Higher Educatio

    A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder frequent at old age characterized by atrophy of the nigrostriatal projection. Overexpression and A53T-mutation of the presynaptic, vesicle-associated chaperone alpha-synuclein are known to cause early-onset autosomal dominant PD. We previously generated mice with transgenic overexpression of human A53T-alpha-synuclein (A53T-SNCA) in dopaminergic substantia nigra neurons as a model of early PD. To elucidate the early and late effects of A53T-alpha-synuclein on the proteome of dopaminergic nerve terminals in the striatum, we now investigated expression profiles of young and old mice using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and mass spectrometry. In total, 15 proteins were upregulated and 2 downregulated. Mice before the onset of motor anomalies showed an upregulation of the spot containing 14-3-3 proteins, in particular the epsilon isoform, as well as altered levels of chaperones, vesicle trafficking and bioenergetics proteins. In old mice, the persistent upregulation of 14-3-3 proteins was aggravated by an increase of glial fibrillary acidic protein (GFAP) suggesting astrogliosis due to initial neurodegeneration. Independent immunoblots corroborated GFAP upregulation and 14-3-3 upregulation for the epsilon isoform, and also detected significant eta and gamma changes. Only for 14-3-3 epsilon a corresponding mRNA increase was observed in midbrain, suggesting it is transcribed in dopaminergic perikarya and accumulates as protein in presynapses, together with A53T-SNCA. 14-3-3 proteins associate with alpha-synuclein in vitro and in pathognomonic Lewy bodies of PD brains. They act as chaperones in signaling, dopamine synthesis and stress response. Thus, their early dysregulation probably reflects a response to alpha-synuclein toxicity

    The Lysosome and Intracellular Signalling.

    Get PDF
    In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed

    Rapid Dissemination of SIV Follows Multisite Entry after Rectal Inoculation

    Get PDF
    Receptive ano-rectal intercourse is a major cause of HIV infection in men having sex with men and in heterosexuals. Current knowledge of the mechanisms of entry and dissemination during HIV rectal transmission is scarce and does not allow the development of preventive strategies. We investigated the early steps of rectal infection in rhesus macaques inoculated with the pathogenic isolate SIVmac251 and necropsied four hours to nine days later. All macaques were positive for SIV. Control macaques inoculated with heat-inactivated virus were consistently negative for SIV. SIV DNA was detected in the rectum as early as four hours post infection by nested PCR for gag in many laser-microdissected samples of lymphoid aggregates and lamina propria but never in follicle-associated epithelium. Scarce SIV antigen positive cells were observed by immunohistofluorescence in the rectum, among intraepithelial and lamina propria cells as well as in clusters in lymphoid aggregates, four hours post infection and onwards. These cells were T cells and non-T cells that were not epithelial cells, CD68+ macrophages, DC-SIGN+ cells or fascin+ dendritic cells. DC-SIGN+ cells carried infectious virus. Detection of Env singly spliced mRNA in the mucosa by nested RT-PCR indicated ongoing viral replication. Strikingly, four hours post infection colic lymph nodes were also infected in all macaques as either SIV DNA or infectious virus was recovered. Rapid SIV entry and dissemination is consistent with trans-epithelial transport. Virions appear to cross the follicle-associated epithelium, and also the digestive epithelium. Viral replication could however be more efficient in lymphoid aggregates. The initial sequence of events differs from both vaginal and oral infections, which implies that prevention strategies for rectal transmission will have to be specific. Microbicides will need to protect both digestive and follicle-associated epithelia. Vaccines will need to induce immunity in lymph nodes as well as in the rectum

    Lysosomal size matters

    No full text
    corecore