3,693 research outputs found

    Leases by Non-Owners

    Get PDF

    Some Legal Problems in Group Insurance

    Get PDF

    Arrow ribbon graphs

    Full text link
    We introduce an additional structure on ribbon graphs, arrow structure. We extend the Bollob\'as-Riordan polynomial to ribbon graph with this structure. The extended polynomial satisfies the contraction-deletion relations and naturally behaves with respect to the partial duality of ribbon graphs. We construct an arrow ribbon graph from a virtual link whose extended Bollob\'as-Riordan polynomial specializes to the arrow polynomial of the virtual link recently introduced by H.Dye and L.Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.Comment: to appear in Journal of Knot Theory and Its Ramification

    Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Get PDF
    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones

    Paleomagnetism of the Duke Island, Alaska, ultramafic complex revisited

    Get PDF
    The Duke Island ultramafic intrusion was emplaced into the Alexander terrane immediately preceding development of a regional mid-Cretaceous thrust belt. Paleomagnetic samples were collected from exposures of ultramafic rock with cumulate layering northwest of Judd Harbor and northwest of Hall Cove. Thermal demagnetization results were analyzed using principal component analysis to isolate the characteristic remanent magnetization. Site-mean characteristic directions determined from 16 sites fail the fold test at 95% confidence, indicating that cumulate layering attitudes were highly contorted at the time of magnetization, at least on a scale of tens of meters. Variations in cumulate layering attitudes probably resulted from the combined effects of thermal convection phenomena during crystallization and deformation following crystallization but prior to magnetization. Analysis of cumulate layering over larger structural domains indicates that kilometer-scale deformation produced southwest plunging folds within the Hall Cove and Judd Harbor bodies. Bogue et al. [1995] proposed that a compound structural correction involving unplunging of fold axes followed by unfolding of average cumulate layering could restore cumulate layering to horizontal. However, using the full set of 21 site-mean paleomagnetic directions from Duke Island (16 from the current study and 5 from Bogue et al. [1995]), the compound structural correction yields mean paleomagnetic directions from the Judd Harbor and Hall Cove areas that are statistically distinguishable at 99% confidence. This result indicates that even on the kilometer-scale, cumulate layering within the Duke Island ultramafic intrusion was neither coplanar nor horizontal at the time of magnetization. Observations of cumulate layering in other ultramafic intrusive rocks indicate that this layering can significantly depart from horizontal by 10°–20° even on the kilometer scale. Therefore use of cumulate layering of ultramafic rocks as a proxy for paleohorizontal is not justified, and paleomagnetic directions from the Duke Island ultramafic intrusion cannot be used to infer the Cretaceous paleolatitude of the Insular superterrane

    Cool Jupiters greatly outnumber their toasty siblings : Occurrence rates from the Anglo-Australian Planet Search

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual - but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of 'cool Jupiters' - analogues to the Solar system's giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters.We find that the occurrence rate of such 'cool Jupiters' is 6.73 +2.09 -1.13 per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at 0.84 +0.70 -0.20 per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ~1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system's place in the cosmos.Peer reviewe

    Behavior Constrains the Dispersal of Long-Lived Spiny Lobster Larvae

    Get PDF
    Behavior such as ontogenetic vertical migration (OVM) limits the transport of marine larvae with short pelagic larval durations (PLDs), but its effect on the supposed long-distance dispersal of larvae with long PLDs is unknown. We conducted laboratory tests of ontogenetic change in larval phototaxis and examined size-specific patterns of larval distribution in the plankton to characterize OVM in the Caribbean spiny lobster Panulirus argus during its long (6 mo) PLD. We then used a coupled biophysical model to explore the consequences of OVM and hydrodynamics on larval P. argus dispersal in the Caribbean Sea. Larvae reared in the laboratory were positively phototatic for the first 2 mo and then avoided light thereafter, similar that seen in the planktonic distribution of same-sized larvae. Simulations of larval dispersal from 13 spawning sites in the Caribbean Sea predicted that twice as many larvae would recruit to nurseries if they displayed OVM compared with passive dispersers. Larvae with OVM typically settled spawned, while passive dispersers often settled \u3e1000 km away. OVM also produced an asymmetrical bimodal pattern of dispersal dominated by larvae that settled near their origin (similar to 60%), but showed a second peak of larvae that dispersed over long distances (similar to 20%). Hydrodynamics created subregional differences in the potential for self-recruitment. Our findings suggest that (1) larval behavior constrains the dispersal of even long-lived larvae, particularly in tandem with retentive oceanographic environments, and (2) larval sources of P. argus in the Caribbean Sea cannot be estimated from passive transport and surface circulation
    • …
    corecore