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Behavior constrains the dispersal of long-lived 
spiny lobster larvae 

Mark J. Butler IV1·* , Claire B. Paris2 , Jason S. Goldstein3 , Hirokazu Matsuda4, 
Robert K. Cowen2 

10 1d Dominion University, Department of Biological Sciences, Norfolk, Virginia 23529, USA 
1University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, Florida 33149, USA 

3Deparbnent of Zoology, University of ew Hampshire , Durham, New Hampshire 03820, USA 
4Mie Prefecture Fisher ies Research Institute , Hamajima, Mie, Japan 

ABSTRACT: Behavior such as ontogenetic vertical migration (OVM) limits the transport of marine 
larvae with short pelagic larval durations (PLDs), but its effect on the supposed long-distance disper
sal of larvae with long PLDs is unknown. We conducted laboratory tests of ontogenetic change in lar
val ph ototaxis and examin ed size-specific patterns of larval distribution in the plankton to character
ize OVM in the Caribbean spiny lobster Panulirus argus during its long (6 mo) PLD. We then used a 
coupled biophysical model to explore the consequences of OVM and hydrodynamics on larval 
P. argus dispersal in the Caribbean Sea. Larvae reared in the laboratory were positively phototatic for 
the first 2 mo and then avoided light thereafter, similar that seen in the planktonic distribution of 
same-sized larvae . Simulations of larval dispersal from 13 spawnin g sites in the Caribbean Sea pre
dicted th at twice as many larvae would recruit to nurseries if they displayed OVM compared with 
passive dispersers . Larvae with OVM typically settled <400 km from where they were spawned, 
while passive dispersers often settled >1000 km away. OVM also produced an asymmetrical bimodal 
pattern of dispersal dominated by larvae that settled near their origin (-60 % ), bu t showed a second 
peak of larvae that dispersed over long distances (-20 % ). Hydrodyn amics created subregional differ
ences in the potential for self-recr ui tment. Our findings suggest that (1) larval behavior constrains the 
dispersal of even long-lived larvae, parti cularly in tandem with reten tive oceanographic environ
ments, and (2) larval sources of P. argus in the Caribbean Sea cannot be estimated from passive trans
port and surface circulation . 

KEY WORDS: Larval dispersal · Vertical migration · Phototaxis · Connectivity · Panulirus argus · 
Spiny lobster 

-----------Resale or republication nol permill'ed without written consent of the publisher----------

INTRODUCTION 

The dis tance marine larvae are physically trans
ported generally increases with larval duration 
(Largier 2003, Siegel et al. 2003); thus, species with 
long pelagic larval durations (PLD) can potentially dis
perse thousands of kilometers unless constrain ed by 
hydrodynamic features or by larval behavior such as 
vertical migration (Paris & Cowen 2004, Paris et al. 
2007, Woodson & McManus 2007). Vertical migration, 
usually controlled by changes in light that occur with 

' Emai l: mbutler@odu.edu 

photoperiod and depth, is common among marine lar
vae and is manifested both in daily rhythms and with 
changes in deve lopment (reviewed in Forward 1988). 
Diel vertical migration, whereby zooplankton rise at 
night to prey-rich waters near the surface a nd sink to 
dimly lit depths during the day, has been known for 
decades (Clarke 1933) and m ay change with develop
ment (i.e. ontogene tic vertical migra tion [OVM ]) , which 
tends to stratify different larval stages by depth (Leis 
2006) . Ocean currents also frequently differ in direction 
or speed with depth (Paris et al. 2002). Thus, after many 
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weeks or months of larval development, the dispersaldf 
larvae engaged in vertical migration usually differs 
from those that drift passively in the sea (see Sponaugle 
et al. 2002, Pineda et al. 2007 for reviews). 

Predator avoidance is generally considered the se
lective force that has driven the evolution of photo
behavior and vertical migration in zooplankton 
(Ohman 1990, DeRobertis et al. 2000). However, diel 
vertical migration and OVM also enhance the reten
tion of meroplanktonic larvae in coastal zones and 
increase their probability of recruitment. Evidence for 
this comes from studies of stage-specific larval bio
geography (e.g. Dennis et al. 2001, Sekiguchi & Inoue 
2002), genetic studies (reviewed by Hedgecock et al. 
2007 and by Weersing & Toonen 2009). mark-recap
ture stuclies of larvae bearing natural or artificial tags 
(reviewed by Thorrold et al. 2007), tracking of.larval 
cohorts in situ from hatching to settlement (Paris & 
Cowen 2004, Planes et al. 2009) and predictions of lar
val clispersal from coupled physical-biological models 
that include diel vertical migration and OVM (re
viewed by Werner et al. 2007) . Combined, these inves
tigations present a compelling argument that larval 
behavior increases self-recruitment of coastal species, 
that is, the return of larvae to the population from 
which they were spawned. These new findings refute 
the conventional wisdom that PLD is a good predictor 
of dispersal and indicate that the population dynamics 
of many species are probably more 'closed' than previ
ously believed (Shanks et al. 2003). This shift in the lar
val dispersal paradigm has important ramifications for 
the conservation and management of marine resour
ces, including fishery management and the design of 
marine protected areas (reviewed by Fogarty & Bots
ford 2007, Jones et al. 2007). 

Yet, the evidence for behavioral enhancement of 
self-recruitment in marine systems is built almost 
entirely on studies of species with short PLDs, mostly 
fishes. It is questionable whether OVM would be as 
effective in promoting self-recruitment for species with 
long PLDs and thus providing greater potential for dis 
persal. The range in PLDs in the sea, particularly 
among invertebrates, is remarkable-from a few 
homs (e .g . sponges, asci.dians), to weeks (e.g. most 
molluscs), to several months or even years (e.g. deca
pod crustaceans) (Bradbury & Snelgrove 2001). Among 
those taxa at the longest PLD extreme are spiny lob
sters (Decapoda; Palinurdiae) whose larval periods are 
typically 4 to 12 mo with some as long as 24 mo 
(Phillips et al. 2006). Unfortunately, many of the tech
niques devised for the study of larval dispersal in other 
marine species (e.g. fish) are not applicable to inverte 
brates like spiny lobsters. Lobsters have no calcified 
internal structures similar to otoliths in fish, so it is not 
possible to use elemental fingerprinting to examine 

population connectivity (see Thorrold et al. 2007). 
Genetic studies of spiny lobster connectivity have also 
been hampered by high genetic variability and poor 
subpopulational genetic differentiation (Ovenden et 
al. 1992, Silberman et al. 1994, Sarver et al. 2000). 

Researchers have instead relied on biophysical mod
eling to examine larval dispersal in spiny lobsters, with 
studies of Panulirus marginatus in Hawaii (Polovina et 
al. 1999), P. a1-gus in the Bahamas and the Atlantic 
Ocean (Lipcius et al. 2001. Stockhausen & Lipcius 
2001, Briones-Fourzan et al. 2008, Rudorff et al 2009), 
P. cygnus in Western Australia (Griffin et al. 2001) and 
Jasus edwardsii in New Zealand (Chiswell & Booth 
2008). However, only one of these models included lar
val behavior in its formulation (Griffin et al. 2001), and 
none have examined its importance to dispersal. 
Chiswell & Booth (2008) concluded from their model
ing of passive dispersal in lobsters that ' ... understand
ing larval behaviour is the most critical aspect in deter
mining laival connectivity'. 

The subject of our study, the Caribbean spiny lobster 
Panulirus aigus, is the target of one of the most valu
able and widespread fisheries in the Caribbean Sea, 
valued at nearly US$500 million but considered fully or 
overexploited (Ehrhardt 2005, FAO 2006, Chavez 
2008). Like all spiny lobsters, P. argus has a protracted 
PLD, which has long been suspected to be 5 to 9 mo 
(Lyons 1980) and recently estimated at 5 to 7 mo based 
on laboratory rearing of larvae (Goldstein et al. 2008). 
This is one of the longest PLDs known for a marine 
organism in the Caribbean Sea. Larval P. argus meta
morphose into postlarvae near the shelf break (Yeung 
& McGowan 1991). and the nonfeeding postlarvae 
swim and are transported into vegetated, back-reef 
nursery habitats (Acosta & Butler 1999) to which they 
are attracted by coastal chemical cues, particularly red 
macroalgae (Goldstein & Butler 2009), which are their 
preferred settlement habitat (Marx & Herrnkind 1985, 
Herrnkind & Butler 1986, Behringer et 'a1. 2009). Post
larvae metamorphose into juvenile lobsters that 
remain within back-reef habitats (e.g. hard-bottom 
areas, seagrass meadows, mangroves) for 1 to 2 yr until 
they near maturity when they migrate to the coral reef 
to join adult populations. Adults spawn along the 
deeper edges of coral reefs; most spawning occurs 
from March to June, but continuous spawning by a 
fraction of the population occurs year-round at lower 
latitudes (Fonseca-Larius & Briones-Fourzan 1998, 
Bertelsen & Matthews 2001). 

Our goals in this study were 2-fold. First, we quan
tified OVM in larval Caribbean spiny lobsters by 
examining age-specific photobehavior in laboratory 
experiments and stage-specific larval depth distribu
tion from plankton sampling. We then used a coupled 
3-dimensional (3D) biophysical model to explore the 



BuUer et al.: Behavior of lobster larvae 225 

effect of OVM on the dispersal of P. ai-gus larvae in the 
Caribbean Sea, comparing also the effect of oceano
graphic environment (i.e. advective versus dispersive) 
on dispersal. 

MATERIALS AND METHODS 

Vertical migration of larvae: laboratory experi
ments. Laboratory culture of phyllosoma larvae: Our 
laboratory experiments exploring ontogenetic changes 
in spiny lobster larval phototaxis were conducted on 
larvae reared in the laboratory according to methods 
described in Goldstein et al. (2008). In brief, recently 
mated female Panulirus argus that had not yet 
spaW11ed were collected in the Florida Keys, Florida, 
USA, and shipped by air to the Fisheries Research 
Institute in Hamajima, Mie Prefectme, Japan. The lob
sters were held in a 3000 l, temperature-controlled 
(26.5 ± 0.5°C), flow-through seawater tank and fed 
fresh mussel and frozen krill until they spawned and 
their eggs hatched. Upon hatching, larvae were col
lected and cultured at 24 to 25°C and 33 to 35 psu in 
40 l acrylic culture tanks equipped with filtered 
(0.2 µm), flow-throug h (60 to 90 l h- 1

) seawater under a 
12 h light: 12 h dark photoperiod using full-spectrum 
fluorescent bulbs (daylight intensity, -5 µmol m-2 s- 1

). 

Chloramphenicol, an antibiotic, was added to the cul
ture tank weekly. Newly hatched larvae were fed 
Aitemia, whereas older larvae were fed both Aitemia 
and finely minced mussel gonad. 

La1·val phototaxis experiments: Phototaxis experi
ments were conducted in 2 cylindrical test chambers 
made of acrylic (Fig. l); the smaller chamber (1.1 1, 
50 cm height x 6.0 cm internal diameter Ii.ct. I) was used 
in trials with early stage larvae, whereas larvae > 100 d 
old were tested in the large chamber (3.8 1, 50 cm 
height x 11.5 cm i.d .). Each chamber was partially 
immersed in a thermostatically regulated 25 l water 
bath at 24 to 25°C. The side of each chamber was 
demarcated into 1 cm increments for measuring swim
ming speeds. Light entered the top of the experimental 
chambers after passing through a filter array (Fig. 1). 
For our laboratory phototaxis experiments, we used 
filter arrays that produced wavelengths and light 
intensities indicative of those observed during the day 
at 3 depths (5, 50 and 75 to 100 m) in the Caribbean. 
These depths define the range within which phyllo
some larvae are most commonly collected (Bradford et 
al. 2005). The reference depths and corresponding 
light spectra and intensities used in our expe1iments 
are listed in Table 1. Light characteristics were based 
on empirical light measurements that we collected 
with a light meter (model LI-250, LI-COR) during 
monthly plankton sampling conducted between Miami 

Light source 

Filter array 

Phyllosoma 

30 cm 

LICOR light meter 

Fig. 1. Panulirus argus. Light chamber apparatus used to 
test the photoresponse of spiny lobster phyllosome larvae to 

various light regimes 

Table 1. Panulirus argus. Light treatment conditions used in 
the laboratory phototax.is trials of phylJosome larvae 

Simulaled condition Wavelength 
(run) 

Daylight at 0- 50 m depth 400- 600 
Daylight at 50 - 75 m depth 550 
Daylight at 75-100 m depth 470 
Night with no moonlight 0 

Light intensity 
(ilffiol m-2 s- 11 

0.80- 1.00 
0.03-0.04 
0.03-0.04 

0.00 

(Florida) and Bimini (The Bahamas) in 2003 and 2004, 
which were similar to more generalized marine optical 
reference data (Jerlov 1976). Larvae were also tested 
in complete darkness to represent nighttime conditions 
in the absence of reflected lunar light. 

The light source for all trials was a 300 W, quartz
halogen, filament lamp (model LGPS, Olympus) pro
jected from a fiber optic cable into a 10 cm long cylin
drical PVC housing that held the light filter array. The 
filter array consisted of (1) a filte r of the desired wave
band depending on the light trial, (2) a neutral density 
filter to achieve equivalent irradiance, (3) a 'hot' mirror 
with a 45° to 48° angle of incidence to reduce heat and 
bend light appropriately (Snell's Law; Jerlov 1976) and 
(4) a ground glass diffuser plate to scatter light homo-
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genously. Light filters used in the study were 25 mm in 
diameter and constructed of fused silica glass allowing 
UVA transmittance (Edmund Optics). Spectral compo· 
sition, output and quality were all tested and verified 
using a spectrometer (model USB 4000, Ocean Optics). 
The light intensity was measured with a light meter 
(model Ll-250, LI-COR). Filtered light exited the filter 
housing and entered the experimental chamber 
through a 25 mm hole. 

The swimming responses of larvae to the 4 light 
treatments were tested in the experimental chamber 
(1 larva per tlial) approximately every 2 wk during lar· 
val development: 7, 21, 28, 62, 81, 118, 159, 203, 223 
and 260 dafter hatch (DA.H.). We tested 10 lo 24 larvae 
in each of 37 treatments with different combinations of 
light regime and developmental time; 3 treatments 
testing larvae <62 DAH at the 550 nm light level were 
not conducted due to logistical problems. Trials were 
run between 11:00 and 16:00 h to minimize potential 
bias due to endogenous rhythms in photobehavior. 
Before the start of each trial, individual larvae were 
removed from group culture, their carapace lengths 
(CL) measured with a profile projector (model V-12A, 
Nikon) and then dark-adapted for 45 min in indi· 
victual, 400 ml, seawater-filled bowls . A single larva 
was then added in the dark to the center of the light 
chamber -20 cm below the surface and the chamber 
was then illuminated from the top (Fig. 1). We then 
measured the vertical distance the larvae moved either 
toward or away from the light during the 2 min long 
trial. Larvae were then given a 3 min respite in total 
darkness before each was exposed to the next ran
domly chosen light treatment. Thus, each larva was 
exposed to each of the 4 light treatments (Table 1), 
similar to the statistical design used in tests of copepod 
phototaxis by Cohen & Forward (2002). These data 
were analyzed using a 2-factor repeated measures 
ANOVA to test for differences among larval ages 
(among-subjects factor) and light treatments (within
subjects factor) for different larvae (subjects) with 
respect to the distance they moved from the light 
source. The data did not meet parametric assumptions 
and various data transformations were ineffective in 
alleviating the problem, so the data were rank trans · 
formed before use in the ANOVA, resulting in a non
parametric analysi.s (Quinn & Keough 2002, Zar 2009). 

Larval vertical distribution: plankton sampling. 
Phyllosome larvae were collected during 2003 and 
2004 in monthly plankton surveys along a 17 station, 
80 km transect crossing the Straits of Florida at 
25° 30' N. Plankton sampling occurred during daylight 
hours at each station with a combination of neuston 
and vertically discrete net systems. The neuston net 
combined a 1 x 2 m net (1000 µm mesh) with a 1 x 0.5 m 
net (150 µm mesh). The vertically discrete sampling 

system was a combined asymmetrical multiple open
ing-closing net and environmental sampling system 
(MOCNESS) that supported a 4 m2 net (1000 µm mesh) 
together with a 1 m2 net (150 µm mesh). Additional 
technical details concerning the sampling apparatus 
are presented in Guigand et al. (2005). Nets were 
opened and closed simultaneously to sample 4 discrete 
depth ranges: 100-75 m, 75-50 m, 50-25 m, and 
25-0 m. The MOCNESS also was equipped with a flow 
meter, CTD, fluorometer, transrnissometer and down
welled light sensor. Plankton samples were filtered, 
fixed in 95 % ethanol, filtered again after 3 to 7 cl and 
then preserved in 70 % ethanol. In the laboratory, the 
phyllosome larvae were sorted from the 1000 pm net 
samples. Data on fish larvae retrieved from the plank
ton samples are given in Llopi.z & Cowen (2008). All 
phyllosome larvae were identified, counted and mea· 
sured (carapace length [CL]) using either digital 
calipers or an ocu.lar micrometer. 

Modeling larval dispersal. The coupled biophysical 
larval dispersal modeling system that we used is a spa
tially explicit individual based model (IBM) composed 
of 4 stand alone components: (1) a benthic habitat 
module representing spawning and recruitment habi· 
tats, (2) a physical oceanographlc module producing 
3-D currents, (3) a biological module depicting larval 
and postlarval life history and behavior and (4) a La
grangian stochastic model module that tracks the tra
jectory of individual larvae (particles). The Lagrangian 
stochastic model integrates, along each individual par
ticle path, information derived from the other modules. 
Details on the coupled biophysical algorithms and 
modeling approach can be found in Cowen et al. (2006 
witl1 supporting online material) and Paris et al. (2007). 
Below we describe how the modules were parameter
ized for Panulirus argus. 

The benthic habitat module was coupled to the La· 
grangian stochastic model and contained the spawn
ing locations (i.e. larval sources) and coastal habitat 
information (i.e. presence of suitable nursery areas) 
accessed by the particle tracking scheme at each time 
step. The habitat module was a. matrix representing 
both spawning and recruitment areas built using the 
UNEP-WCMC (Spalding et al. 2001) and Coral Ree f 
Millennium Mapping Project (Andrefouet et al. 2004) 
remote sensing data. The resulting coverage consisted 
of 261 discrete habitat polygons of varying size distrib· 
uted throughout the Caribbean Sea and represented 
the major spawning and nursery habitats for Panulirus 
argus. P. argus postlarvae settle in vegetated back-reef 
environments and not on coral reefs per se, but the 
model's polygons were large enough to represent both 
reef (spawning habitat) and adjacent nursery habitat. 
To account for the ability of P. argus postlarvae to de· 
tect and swim toward coastal settlement habitat (Gold· 
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stein & Butler 2009), a 'postlarval detection buffer' of 
18 km extended offshore of each habitat polygon. This 
is within estimates of where metamorphosis from the 
phyllosome to postlarval stage occurs near the shelf 
edge (Yeung & McGowan 1991). 

The physical oceanographic module consisted of the 
hybrid coordinate ocean model (HYCOM) global (i.e. 
1/12°, ca. 7 km horizontal resolution) . HYCOM is a 
flexible vertical coordinate system: isopycnal in the 
stratified open ocean, terrain-followin.g in the shallow 
coastal regions and z-level (depth specific) in mixed 
layer or unstratified seas. Bottom topography was 
derived from a quality controlled NRL ETOP0v2 data
set of 2 min (3.7 km) resolution. The larval settlement 
habitat was derived from the Cora.I Reef Millennium 
dataset with resolution of 500 m. Coupled to the 
Lagrangian stochastic model, this module provided 
daily 3-D current velocities a.rchived from January 
2003 to December 2004. 

The larval biological module accounted for spiny 
lobster spawning schedules and early liie history traits. 
Specifically, this module provided information on mor
tality rate (M), pelagic larval duration (PLD), compe
tency period, ontogenetic vertical migration (OVM) 
and spatio-temporal patterns in spawning. Since there 
is no published information on phyllosome larval sur
vivorship, mortality rate was set to a value of 10- 2 ct-1. 
which is within estimates obtained for fish larvae 
(Houde 1989). When coupled with variance in individ
ual PLD, this results in differential survivorship among 
individuals (see Paris et al. 2007). The PLD of lobster 
larvae in our model was set to a mean value (±1 SD) of 
174 ± 22 ct, based on data from laboratory rearing of 
Panulirus argus from egg lo postlarva (Goldstein et al. 
2008), which is similar to field estimates based on the 
time elapsed between peak spawning and peak in the 
arrival of postlarvae to selected regions (Lewis 1951, 
Lyons 1980). Larvae in the model metamorphosed 
to postlarvae within a variable competency period 
(range, 152 to 196 d) and postlarvae were recorded as 
'settled' if they came within 18 km of a benthic nursery 
habitat polygon within this competency period; if suit
able habitat was not encountered within this compe
tency time window they 'died'. 

Observed stage-specific vertical distributions of lar
vae in the field combined with age (size) -specilic pat
terns in larva.I behavior in the laboratory were used to 
construct daytime and nighttime age-specific probabil
ity density functions (PDF) for each depth bin for larvae 
in the model. Our goal was to construct behavioral rules 
that resulted in modeled larval depth distributions that 
reflected the kind of OVM indicated in field plankton 
studies (Yeung & McGowan 1991, Yoshimura et al. 
2002), including our own. The resultant age-specific 
larval depth distributions predicted by the model were 

then converted to size-specific depth distributions for 
comparison with observed field data to obtain a good 
match (see Results). Thus, in the model larvae generally 
remained in the O to 20 m depth stratum until Day 13, 
after which they progressively migrated downward in 
the water column but continued diel vertical migration 
according to stage-specific PDF, a scenario similar to 
that described for fish larvae in Paris et al. (2007). 

Finally, in the Lagrangian stochastic model, larvae 
released from the benthic habitat module were moved 
at each time step (.C-1 = 7200 s) using the 3-D velocity 
fie lds from the oceanographic module by a 4th-order 
Runge-Kutta integration of the ordinary differential 
equation. Turbulence smaller than the resolution of the 
ocean model was resolved by random displacement 
(Paris et al. 2002). In addition to advection and diffu
sion, larvae were moved vertically following the onto
genetic vertical migration prescribed by the biological 
module and postlarvae settled with suitable settlement 
habitat based on information derived from the benthic 
module, allowing us to track the source and destina
tion of each larva. 

Two larva.I behavior scenarios were simulated: (1) 

passive dispersion of larvae and (2) active dispersi.on of 
larvae exhibiting OVM. Larvae were released from 
13 coral reef polygons along the Mesoamerican coast 
(Fig. 2) and tracked until they died or settled within 
coastal nursery habitat. Two spawning events were 
modeled: one in summer and one in winter (June 1 and 
January 1, respectively, of 2004). At each spawning 
location, larvae were released (500 particles per loca
tion) in the surface layer of HYCOM (i.e. 0 to 20 m). 
The areas from which the larvae were released occur 
in areas where lobsters are abundant, but the magni
tude of release for virtual larvae was an abstraction 
meant only for comparative purposes and does not re 
present the true magnitude, seasonality or spatial rep
resentation of lobster spawning in Mesoamerica. 

For each simulation, we computed the total length of 
the larval trajectories as well as the dispersal kernel 
functions k(x,y), defined as the probability distribution 
of settling distance x of a larva dispersed from a loca
tion yin a unit of time (Chesson & Lee 2005). averaged 
for the 13 locations and 2 spawning events in each of 
the scenarios. The range and variance of the dispersal 
kernels serve as a measure of the spatial scale of dis
persion. The dispersal kernel (i.e. probability of larval 
arrival as a function of distance) was estimated by fit
ting to a polynomial function f (x) and sea.led to sum 1. 

The mean dispersal distance was then computed using 
the following equation: 

DM = r .. x·f(x)·dx (1) 

where DM is the mean dispersal scale and f (x) is the 
function fitted to the dispersal kernel. 
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RESULTS 

Larval phololaxis experiments 

All of the larvae we tested were active and swam 
vigorously in response to light. Larval age, light treat
ment and their interaction all significantly affected the 
movement of Panulirus argus larvae in the laboratory 
experiments (Table 2). The significant interaction 
between larval age and light treatment reflected small 
differences in age-specific swimming responses rather 
than more general patterns. Early stage larvae were 
positively phototactic and moved closer to the light 
source than did later stage larvae in all 3 light treat
ments (Fig . 3). A distinct behavioral transition in larval 
response to light occurred at about 100 d posthatch, 
corresponding to a larval size of 10 to 15 mm CL. At 
this age, larvae became negatively phototactic and 
were no longer attracted to light of any wavelength we 
tested. Larvae displayed littl e directional movement in. 
the dark and either maintained their position in the 
water column or sank slowly, the latter behavior being 
more common among the later larval stages (Fig. 3). 

Larval vertical distribution: plankton sampling 

Overall, 6666 Panulirus argus larvae were collected 
at 390 stations during the 2 yr of monthly plankton 

sampling. Larvae were generally collected in all 
months and at all stations and showed considerable 
variation among cruises in abundance, size and spatial 
distribution. Seasonal variation was evident in terms of 
the total number of larvae collected (maximum in July 
and minimum during February and March) and their 

Table 2. Results of 2-factor repeated measures ANOVA on 
rank-transformed data testing the e ffects of larval age and 
light treatment (repeated measure) on the distance that lar
vae moved away from their starting position. Results of post 
hoc Tukey's Honestly Significant Diffe rence tests comparing 
age treatments among larvae and light treatments are pre
sented below the ANOVA table ; treatment groups sharing an 
underline are not significantly different from one another at 

the p < 0.05 level 

Source df MS F p 

Larval age 9 124893.7 10.101 <0 .0005 
Error 85 12364.5 
Individual larvae (age ) 84 12774 .4 6.357 <0 .0005 
Light treatment 3 35422.8 17.627 <0.0005 
Larval age x 25 4606 .2 2.292 <0 .001 

Light treatment 
Error 224 2009.5 
Total 345 

Tukey results 
Larval age (d) : 7 21 28 62 118 203 159 260 223 81 
Light treatment: 0- 50m 50- 75 m Dark 75- 100 m 
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size frequency (more small larvae of <10 mm CL were 
collected in July to September and rnore large larvae 
of> 10 mm CL were collected in September to Novem
ber) . Small larvae were generally more abundant near 
shore, whereas large larvae were evenly distributed 
across the central and eastern portions of the sampling 
transect but were nearly absent from the western edge 
close to Florida. 

The vertical distribution of larvae collected in the 
plankton varied by size (Fig . 4a). Fewer than 2 % of the 
larvae of any size were collected within the neuston 
(upper 1 m) . Smaller larvae (<15 mm) were almost 
exclusively found in the upper 50 m and we re evenly 
distributed between the 0- 25 and 25- 50 m depth bins; 
only ca. 5 'Yo of the small larvae were found below 50 m 
depth. As larvae increased in size, so did their propor
tional occurrence in deeper waters. Although never 
completely absent from the upper layers, the propor
tion of larvae found deeper than 50 m increased from 
ca. 5 to 29 % as larval length increased in all 4 size cat
egories. The change in depth was initiated by larvae 
within the 5- 10 mm size category and was complete 
by 15 mm. 

Modeling larval dispersal 

Dispersal by passive versus vertically migrating larvae 

The resulting pattern of OVM simulated in the 
model that emerged from our larval behavioral rules 
(Fig. 4b) was similar to that observed in plankton tows 
(Fig. 4a). The depth bins used in the model (every 
20 m) and those sampled in the field (every 25 m) were 
not identical, so there is no way to know for certain 
how old the field caught larvae of a given size really 
were. Although the model and field data on OVM defy 
a truly direct comparison, their similarity is striking. 1n 
both graphs one can see that larvae less than 90 d old 
were found almost exclusively at depths< 40 to 50 m, 
larvae between 90 and 130 d old were found mostly at 
20 to 50 m, and those older than 130 d were increas
ingly found at depths of 40 to 60 m or more. The largest 
discrepancy between the model and field data was for 
larvae < 90 d old in surface waters, but this is probably 
a reporting artifact. The model data include many lar
vae that were just a few days old, which in reality 
would still be on the shelf near the reef where the off-
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shore plankton sampling would have missed them. 
Thus, we believe that ontogenetic changes in larval 
vertical migration as simula.ted in the model provided a 
good representation of OVM as approximated from 
field plankton sampling and thus is a valid comparison 
of the potential effect of vertical migration on dispersal 
compared with passive dispersers. 

Simulations comparing the settlement of passively 
dispersing la.rvae to that for larvae exhibiting OVM 
(Fig. 5) indicated that larval behavior resulted in more 
than h'li.ce as much settlement into nursery habitat 
polygons than did passive transport. Even after an 
average of 6 mo in the plankton, during which time lar
vae traveled 22 to 45 km d- 1

• settlement of larvae with 

OVM was most often within 400 km of their spawning 
sites (mean= 370 km, SD= 110 km; Fig. 5). In contrast, 
passively dispersing larvae settled nearly 1000 km 
(mean = 952 km, SD = 650 km) from their spawning 
sites (Fig . 5). The dispersal kernels for both active and 
passive larvae were bimodal. but the kernel for active 
larvae was strongly asymmetrical with the peak dis
persal being much closer to the origin. Examples of 
dispersal trajectories are shown in Fig. 6 for 6 of the 
spawning release sites, including 2 sites in Belize with 
contrasting offshore oceanographic conditions (Am
bergris Cay, Fig. 6C; Glovers Atoll, Fig. 6D), which are 
discussed in detail below. 
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Dispersal in retentive versus advective 
environments 

The results of the simulation comparing 
passive and active Panuli.rus argus larval 
dispersal from 2 spawning sites in Belize, 
which differed in coastal oceanography, 
were similar to the results of the overall sim
ulation runs for all of the 13 release sites. 
Simulations for the 2 contrasting sites in 
Belize revealed that total settlement increa
sed by a factor of 4 when larvae vertically 
migrated, and also resulted in settlement 
occurring appreciably closer to spawning 
sites (ca. 570 km closer) than when larvae 
dispersed passively (Fig. 7) . The maximum 
dispersal of larvae differed little when 
released in the 2 contrasting environments 
in Belize. However, the mean dispersal was 
much lower in the retentive environment 
near Glovers Atoll (mean dispersal = 
210 km) than at Ambergris Cay (mean dis
persal = 500 km) where larvae tend to be 
swept northward (Fig. 7). 

The shape of the dispersal kernels also 
differed between these contrasting hydro
dynamic environments depending on larval 
behavior (Fig. 7). In the advective environ
ment near Amberglis Cay, dispersal was 
greater and more evenly distributed be
tween 500 and 1500 km when larvae drifted 
passively. The shape of the bimodal disper
sal kernel became strongly asymmetrical 
when larvae enga.ged in OVM; most larvae 
settled ca. 250 km away, although an appre
ciable number settled > 1000 km away. At 
Glovers Atoll, where a persistent gyre 
occurs offshore, the dispersal kernel was 
bimodal for both passive and active larvae, 
but OVM again accentuated that asymme
try by shifting peak settlement closer 
(100 km) to their natal origin. 

DISCUSSION 

We used laboratory expelirnents to ex
p lore ontogenetic changes in larval photo
taxis, plankton sampling to verify size
specific larval depth distributions and 
biophysical modelin.g to explore the conse
quences of ontogenetic vertical migration 
(OVM) and hydrodynamics on the dispersal 
of spiny lobster larvae. This taxon has a 
long planktonic larval duration (PLD) and is 

Fig. 6. Panulirus al'gus. Examples of the effect of local oceanography on 
spiny lobster larval dispersal frnm 6 larval release sites (0) in the 
Mesoamerica region of the Caribbean Sea. Shown are model predicti.ons of 
the dispersal of larvae (grey lines) exhibiting ontogenetic vertical migra
ti.on and released from (A) Punta Tupa, Mexico, (BJ Mexico Rocks, Mexico, 
(C) Ambergris Cay, Belize, (DJ Glovers Atoll, Belize, (E) Tres Punlas, 

Guatemala, and (F) Cayos Cochinos, Honduras 
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assumed to be highly dispersive. Our findings lie in 
stark contrast to the prevailing ideas about the connec
tivity of spiny lobster populations in the Caribbean Sea 
and, more generally, the likely dispersal of species 
with long PLDs. 

The response of laboratory-reared larvae to light 
regimes similar in intensity and wavelength to those at 
various depths in the sea changed abruptly after about 
3 mo posthatch. The age (-100 d) and size (-15 mm CL) 
of larvae at the time that this change in behavior 
occurred generally corresponded with the vertical dis 
tribution of larvae that we observed during the day in 

the plankton; smaller larvae (<15 mm CL) were found 
mostly in surface waters (<25 m) compared with larger 
larvae (> 15 mm CL) that were proportionally more 
nwnerous at depths exceeding 75 m . When we incor
porated OVM into biophysical simulations we found 
that it reduced the dispersal of lobster larvae to a frac
tion of that predicted for passive larvae and more than 
doubled their predicted settlement in habitable coastal 
areas. The reduction in dispersal attributable to larval 
behavior was even evident in regions dominated by 
strong advective currents, although dispersal from 
such regions was greater than in regions with persis
tent coastal eddies. When OVM was invoked, the 
resultant dispersal kernel for Panulirus argus larvae 
was asymmetrically bimodal: -60 % of the larvae set
tled within 450 km of their natal site, but a smalJer yet 
notable fraction (22 .4 % ) settled > 1000 km away. Using 
molecular genetics and parentage analysis of adult 
and newly recruited juvenile reef fish, Planes e t al. 
(2009) observed a similar phenomenon . 1n their study, 
42 % of the reef fish recruits returned to their natal site 
after -30 d in the plankton, but larvae from the same 
spawning event also contributed up to 10 % of the new 
recruits to populations tens of kilometers away. 

Larval behavior 

The absence of information on PLD, behavior and 
mortality of marine larvae has limited advances in bio
physical modeling of larval dispersal, as recently noted 
by Marta-Almeda et al. (2006). Given the logistical 
constraint that culturing spiny lobsters through their 
prolonged planktonic phase poses, only 5 of 21 spiny 
lobster species have been reared through all of their 
larval stages and fewer slilJ have yielded estimates of 
PLD or evidence of OVM (Goldstein e t al. 2008). In lieu 
of such information, our understanding of larval be
havior in spiny lobsters has come primarily from obser
vations of larval abundance in depth-stratified plank
ton sampling (see Phillips et al. 2006), as is the case for 
most marine taxa. By combining size-at-age informa
tion derived for laboratory-reared larvae (Goldstein et 
al. 2008). age-specific changes in larval photobehavior 
(reported here) and size-specific patterns in larval ver
tical distribution from our plankton sampling, we esti
mated age-specific ontogenetic changes in behavior. 
Our results are consistent with what one would expect 
with ontogenetic vertical migration, and this informa
tion was used in the parameterization of the larval 
behavior module for our biophysical modeling. 

Our laboratory experiments on larval phototaxis 
were designed to test for ontogenetic patterns in res
ponse to light, not diurnal patterns per se . However, 
our results suggest that early stage larvae (<100 d) 
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probably do not engage in diel vertical migration, 
whereas late-stage larvae probably do. A positive res
ponse to a broad spectrum of light stimuli is character
istic of nonmigratory stages or species that inhabit sur
face waters where they are exposed to a wide range of 
wavelengths (Cohen & Forward 2002). In contrast, spe
cies or stages that migrate to the surface at night gen
erally respond to a narrower range of wavelengths and 
low irradiances indicative of twilight (reviewed in For
ward 1988). Our observations that early stage Panu
lirus argus larvae respond to daylight, but late-stage 
larvae do not, are thus consistent with the hypothesis 
of nonmigratory early stage larvae and migratory late
stage larvae. Our conclusions regardil1g diel vertical 
migration in P. argus larvae also agree with observa
tions of larval vertical distribution noted in field studies 
conducted during the day and night (Buesa 1970, 
Baisre 1976, Yeung & McGowan 1991). Diurnal verti
cal migration by late-stage spiny lobster larvae has 
also been documented in P. japonicus (Yoshinmra et al. 
2002) and P. cygnus (Phillips & Pearce 1997). but 
appears to be absent in Jasus edwardsii (Bradford et al. 
2005). 

Light may not be the only cue used by decapod lar
vae for vertical migration. For example, the presence 
of thermoclines may limit vertical migration, as Austin 
(1972) surmised from his plankton samples of Pan
ulirus argus larvae for which the lower depth limits he 
believed were determined by waters cooler than 24 °C. 
Studies in the Gulf of St. Lawrence show that shrimp 
respond differently to depth-specific thermal cues 
depending on larval stage (Ouellet & Allard 2006). It is 
clear that the terminal larval stages (e.g. postlarvae) of 
both crabs and lobsters respond to a suite of signals 
(e.g. light, chemical, salinity, pressure) that they use 
for orientation during coastal migration (Forward 1988, 
Jeffs et al. 2003, 2005, Goldstein & Butler 2009), and it 
is conceivable that earlier larval stages may respond to 
a variety of environmental cues that govern their verti
cal migration. There currently is no published empiri
cal information available on larval spiny lobster res
ponses to environmental cues other than light; thus, 
the simulations reported here include only their res
ponse to light. 

Behavioral effects on dispersal 

lrrespective of the cues that larvae employ to guide 
them during OVM, modeling results indicated that 
vertical migration aids in retaining larvae nearer to 
their spawning site compared with passive dispersal 
(e.g . Armsworth 2000, Paris & Cowen 2004, Paris et al. 
2007). Together, di.el vertical migration and OVM pro
vide a powerful mechanism for bolstering self-recruit-

ment of coastal species, especially those with weakly 
swimming larvae. Diel vertical migration alone is 
apparently sufficient to counteract the offshore advec
tion of slow-swimming bivalve larvae (Shanks & Brink 
2005) and crab larvae (Marta-Almeida et al. 2006, 
lncze et al. 2010) in areas dominated by strong up
welling. Similarly, an overwhelming body of evidence 
now indicates that the presence of OVM in larvae of 
numerous marine species (reviewed in Almany et al. 
2007, Pineda e t al. 2007, Planes et al. 2009) aids in re
taining or returning those species to coastal nurseries 
near where they were spawned. 

Yet, many biophysical models of larval dispersal still 
ignore larval behavior and rely on simpler passive par
ticle models that are unlikely to provide a realistic pic
ture of larval dispersal (e.g. Roberts 1997). Until now, 
all of the oceanographic modeling studies of Panulirus 
argus dispersal in the Caribbean Sea and south At
lantic Ocean were passive particle models (Stock
hausen & Lipcius 2001, Briones-Fourzan e t al. 2008, 
Rudorff et al. 2009). True ocean circulation and larval 
dispersal are best resolved with more realistic, coupled 
biophysical models (reviewed in Werner et al. 2007, 
Incze et a l. 2010). Previous work near Barbados, that 
used empirical data for the bicolor damselfish Ste
gastes partitus to validate a model similar to the one 
we used, has shown that simulations incorporating lar
val behavior provided a much better fit to real recruit
ment data than did simulations of passively dispersing 
fish larvae (Cowen et al. 2003). The only biophysical 
models of spiny lobster dispersal that include OVM are 
models developed for P. cygnus, a self-recruiting spe
cies restricted to Western Australia (Griffin et al. 2001). 
and the P. argus model presented here. 

Although our simulation results echo the growing 
consensus that larval behavior enl1ances local recruit
ment (Cowen et al. 2000, 2006, Almany et al. 2007, 
Cudney-Bueno et al. 2009), we must guard against 
becoming overly dogmatic in embracing this perspec
tive. The flood of studies demonstrating local recruit
ment is perhaps overshadowing evidence that distant 
dispersal can occur at rates that may indeed be demo
graphically relevant and thus large enough to sustain 
or replenish populations (Becker et al. 2007, Planes et 
al. 2009). Demographic connectivity can also be ex
tended by rare dispersal events, aided by phenomena 
such as hurricanes (Briones-Fourzan e t al. 2008), that 
can sustain distant populations, particularly those with 
long-lived adults (e.g. the storage effect; Warner & 

Chesson 1985, Cowen et al. 2006). Our modeling of 
Panulirus argus larval dispersal suggests that OVM 
can simultaneously enhance local recruitment and pro
mote distant dispersal, at least for species like P. argus 
with long PLDs. The predicted dispersal kernel for 
P. arguswas strongly bin10dal with most (-60 %) larvae 
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settling near their origin, but -20 % settling at distant 
sites . Average dispersal of P. argus in the Caribbean 
Sea may indeed be only 200 to 400 km as our simula
tions suggest. Yet, many simulated larvae were carried 
> 1000 km away, enough to create a second mode in 
the tail of the dispersal kernel and potentially enough 
to be demographically relevant. Indeed, P. argus lar
vae have been collected in plankton tows throughout 
the North Atlantic Ocean far from the coast (Sims 
1968), and viable populations of P. argus occur in 
Bermuda and the Cape Verde Islands (Freitas & Castro 
2005) thousands of kilometers from potential Carib
bean spawning stocks, suggesting that population con
nectivity at such scales is possible. 

Other factors affecting population connectivity 

Larval mortality has a large effect on the probability 
of demographically relevant connectivity (reviewed in 
Sponaugle et al. 2002). Our simulations included lar
val mortality, which was constant across age classes 
and set at a level similar to that used in simulations of 
larval fish dispersal (Houde 1989, Cowen et al. 2006). 
Unfortunately, few empirical estimates of pelagic mor
tality exist for marine larvae, including decapods. 
Morgan (1995) suggests that decapod larval mortality 
generally exceeds 90 % . Field experiments with sand 
dollar larvae, sipunculan larvae and decapod crus
tacean larvae indicate that mortality of newly settled 
juveniles may be as high as or higher than that of 
late-stage planktonic larvae (Acosta & Butler 1999, 
Allen & McAlister 2007). However, estimation of the 
mortality of early stage planktonic larvae in the open 
ocean remains elusive. If it is as high as is generally 
presumed, then variance in pelagic mortality will pro
foundly affect dispersal kernels and population con
nectivity, as modeling studies suggest (Cowen et al. 
2000, Paris el al. 2007). 

Annual, seasonal and short-term fluctuations in 
oceanographic conditions (e.g. hurricanes) or spawn
ing periodicity can also influence larval dispersal. The 
greatest fluctuations in settlement of Panulirus aigus 
postlarvae along the Mexican Caribbean coast are cor
related with hw-ricanes and associated sea level 
changes (Briones-Fourzan et al. 2008), although local 
winds appear to have little influence on their recruit
ment (Acosta et al. 1997, Eggleston et al. 1998, Bri
ones-Fourzan et al. 2008). Vaiiance in ocean circula 
tion combined with variability in individual and 
seasonal reproductive success also creates local and 
regional patchiness in the connectivity and genetic 
structure of sea urchin populations in southeastern 
Australia and New Zealand (Banks et al. 2007). We 
have not explored the extent to which interannual or 

seasonal differences in spawning alter the dispersal of 
the even longer-lived spiny lobster larvae. However, 
we suspect that the spatio-temporal variation in 
P. argus spawning schedules observed in the Carib
bean Sea may result in large differences in the disper
sal of these cohorts, as has been demonstrated in simu
lations of reef fish dispersal under varying seasonal 
oceanographic conditions (Cowen et al. 2003). 

It is also an oversimplification to imply that the sup
ply of spiny lobster postlarvae to the coast predicted by 
biophysical models necessarily foretells their recruit
ment. Larval supply is not the only factor controlling 
recruitment. The availability and suitability of nursery 
habitat is crucial to the successful recruitment of lob
sters (reviewed in Butler et al. 2006) and many other 
reef species (Sleneck et al. 2009). Still, there can be no 
recruitment without an ample supply of settlers, so 
understanding larval dispersal and the factors influ
encing it a re critical for understanding population con
nectivity and its role in sustaining marine populations 
(Kritzer & Sale 2006). 

Implications for resource management 

The importance of spatial structure and connectivity 
for the proper management of marine ecosystems is 
gaining greater recognition (Kritzer & Sale 2006, Foga
rty & Botsford 2007). Yet, lobster populations in the 
Cari.bbean Sea have long been considered to be pan
mictic, i.e. a sin gle population linked by an intermixing 
supply of widely dispersing larvae. Support for this 
hypothesis is based on (1) the long PLD of Panulirus 
argus and complex ocean circulation in the Caribbean 
Sea (Lyons 1980). (2) the poor spawning stock to recruit 
relationship for many local populations of P. argus 
(Butler & Herrnkind 1997, Lipcius et al. 1997, Cruz 
et al. 2001) and (3) the various genetic techniques 
employed over the years that have failed to discern 
appreciable substructure among P. argus populations 
in the Caribbean Sea (Menzies & Kerrigan 1979, SU
bermai1 et al. 1994, Sarver et al. 1998, 2000). In con
trast, management of lobster stocks in the Caribbean 
region has long been predicated on regulations and 
stock assessments that assume self-recruitment. Al
though contradictory to the long-held scientific view of 
pan-Caribbean lobster populations, thjs management 
approach is a pragmatic response given the difficulty 
of multinational comanagement of stocks and the 
absence of strong scientific evidence refuting self
recruitment. 

Our results suggest that at the ecological time 
scales most relevant to management, lobster popula
tions are probably more constrained than scientists 
previously believed. Nonetheless, local recruitment of 



Butler et al: Behavior of lobster larvae 235 

Panulirus argus within the geopolitical borders by 
which most fishery management is bounded is 
unlikely. Even if most dispersal of P. argus larvae is 
only 200 to 400 km from their spawning sites, as our 
simulations suggest, that still exceeds the boundaries 
of most Caribbean nations, especially for stocks dis
tributed near the periphery of those borders. More
over, the degree to which average dispersal applies to 
any particular nation varies. Persistent gyres entrain 
larvae, whereas strong boundary currents sweep 
them away. So 'local' management of lobster stocks 
may be more relevant, for example, in places like the 
Gulf of Honduras (i.e. among Nicaragua, Honduras, 
Guatemala and Belize) that are strongly influenced by 
a persistent offshore gyre. !n contrast, self-recruitment 
is unlikely and local management of P. argus stocks 
would be less effective farther north along the Carib
bean coast of Mexico where a significant portion or 
recruiting larvae are probably derived from subsidies 
originating outside of the region (Briones-Fourzan et 
al. 2008). 

Critical values for demographically relevant recruit
ment are also not known for most species, including 
Panulirus argus. Average or mean dispersal distances 
are generally more likely to be of consequence to 
demographic connectivity than maximum dispersal, 
and thus more important in sustaining populations 
(reviewed by Gaines et al. 2007). However, the bi
modal dispersal of P. argus suggests there are 2 demo
graphically important components to the recruitment 
of this species: a strong local element (<400 km) and a 
more distant component (-1000 km). This bi.modality 
in the dispersal kernels results in part from OVM, but 
is also influenced by regional differences in hydro
dynamic conditions and habitat configuration. Cowen 
et al. (2006) predicted that self-recruitment of reef fish 
possessing PLDs of 30 d varied from 9 % in regions 
with strong boundary currents to a maximum of almost 
60 % where semipermanent gyres occur. Our results 
indicate that local recruitment may be possible even 
for species with long PLDs, but it is most likely to occur 
in regions with persistent recirculation features (e.g. 
southern Cuba, northern Honduras, Panama-Colom
bia and Dry Tortugas gyres) . 

In summary, our results underscore the role of larval 
behavior and regional oceanographic conditions in 
resolving dispersal kernels and connectivity among 
populations of coastal mm"ine organisms, even among 
species with exceptionally long PLDs. As new tech 
niques continue to reveal the true diversity and scales 
of larval dispersal and those results begin to shift para
digms about population connectivity in the sea, man
agement must evolve in ways that more explicitly con
sider regional and taxonomic idiosyncrasies in larval 
retention and advection. 
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