2,602 research outputs found

    New partial dentaries of amphitheriid mammal Palaeoxonodon ooliticus from Scotland, and posterior dentary morphology in early cladotherians

    Get PDF
    We describe two partial dentaries of mammals from the Middle Jurassic of Scotland. They belong to the early cladotherian Palaeoxonodon ooliticus. These dentaries comprise the first specimen of P. ooliticus ever found—although its significance was initially unrecognised so it remained undescribed until now—and the most recently discovered specimen, found during fieldwork in 2017. The new specimen preserves part of the coronoid process of the dentary, previously unknown for P. ooliticus, demonstrating the presence of a deep masseteric fossa, with a prominent crest enclosing the fossa anteriorly, and a masseteric foramen, located in the masseteric fossa on the buccal surface of the dentary. On the lingual surface, the mandibular foramen is offset from the Meckel’s sulcus, and positioned below the alveolar plane. These morphologies allow an updated analysis of the phylogenetic position of P. ooliticus, confirming a sister-taxa relationship between Palaeoxonodon and Amphitherium. The position of the mandibular foramen, and the slight extension of the masseteric fossa into the body of the dentary are new autapomorphies for Palaeoxonodon

    Rise of Dinosaurs Reveals Major Body-Size Transitions Are Driven by Passive Processes of Trait Evolution

    Get PDF
    A major macroevolutionary question concerns how long-term patterns of body-size evolution are underpinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant large-bodied terrestrial fauna during the Triassic (approx. 252–201 million years ago). This landmark event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian–Middle Jurassic. Maximum-likelihood analyses indicate that Cope's rule (an active within-lineage trend of body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary to proposals that Cope's rule is central to vertebrate evolution. Instead, passive processes predominate in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important than the external environment. This clade-dependence is exemplified by maximum size of Middle–early Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-accepted ‘rule’ that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but were facilitated by higher archosauromorph growth rates

    Biology, not environment, drives major patterns in maximum tetrapod body size through time

    Get PDF
    Abiotic and biological factors have been hypothesized as controlling maximum body size of tetrapods and other animals through geological time. We analyse the effects of three abiotic factors—oxygen, temperature and land area—on maximum size of Permian–Jurassic archosauromorphs and therapsids, and Cenozoic mammals, using time series generalized least-squares regression models. We also examine maximum size growth curves for the Permian–Jurassic data by comparing fits of Gompertz and logistic models. When serial correlation is removed, we find no robust correlations, indicating that these environmental factors did not consistently control tetrapod maximum size. Gompertz models—i.e. exponentially decreasing rate of size increase at larger sizes—fit maximum size curves far better than logistic models. This suggests that biological limits such as reduced fecundity and niche space availability become increasingly limiting as larger sizes are reached. Environmental factors analysed may still have imposed an upper limit on tetrapod body size, but any environmentally imposed limit did not vary substantially during the intervals examined despite variation in these environmental factors

    The effect of exogenous glucose infusion on early embryonic development in lactating dairy cows

    Get PDF
    peer-reviewedThe objective of this study was to examine the effect of intravenous infusion of glucose on early embryonic development in lactating dairy cows. Nonpregnant, lactating dairy cows (n = 12) were enrolled in the study (276 ± 17 d in milk). On d 7 after a synchronized estrus, cows were randomly assigned to receive an intravenous infusion of either 750 g/d of exogenous glucose (GLUC; 78 mL/h of 40% glucose wt/vol) or saline (CTRL; 78 mL/h of 0.9% saline solution). The infusion period lasted 7 d and cows were confined to metabolism stalls for the duration of the study. Coincident with the commencement of the infusion on d 7 after estrus, 15 in vitro-produced grade 1 blastocysts were transferred into the uterine horn ipsilateral to the corpus luteum. All animals were slaughtered on d 14 to recover conceptuses, uterine fluid, and endometrial tissue. Glucose infusion increased circulating glucose concentrations (4.70 ± 0.12 vs. 4.15 ± 0.12 mmol/L) but did not affect milk production or dry matter intake. Circulating β-hydroxybutyrate concentrations were decreased (0.51 ± 0.01 vs. 0.70 ± 0.01 mmol/L for GLUC vs. CTRL, respectively) but plasma fatty acids, progesterone, and insulin concentrations were unaffected by treatment. Treatment did not affect either uterine lumen fluid glucose concentration or the mRNA abundance of specific glucose transporters in the endometrium. Mean conceptus length, width, and area on d 14 were reduced in the GLUC treatment compared with the CTRL treatment. A greater proportion of embryos in the CTRL group had elongated to all length cut-off measurements between 11 and 20 mm (measured in 1-mm increments) compared with the GLUC treatment. In conclusion, infusion of glucose into lactating dairy cows from d 7 to d 14 post-estrus during the critical period of conceptus elongation had an adverse impact on early embryonic development

    Understanding the ANC at sub-national level

    Get PDF
    The political entrenchment of the African National Congress (ANC) as the ruling party in South Africa over the last two decades has given rise to an extensive literature focussing upon negative internal trends such as factionalism, the manipulation of internal electoral processes, the pursuit of individual wealth, internal disorder, and increasing tensions within the tripartite alliance. Such trends, along with growing levels of popular protest, suggest a decline in the party’s legitimacy and long term prospects. Such organisational deterioration has occasioned an extensive reflective literature, yet there has been little detailed research into how the ANC operates on the ground. Overwhelmingly, predominant paradigms – of the ANC as a national liberation movement; as a party that has fallen victim to neo- patrimonialism; as a dominant party; and as a vehicle of neo-liberal capitalism – are all illuminating, yet simultaneously entrench key weaknesses in analysis, focussing upon over-arching narratives rather than encouraging careful analysis of causal practices. Much of this flows from the fact that academic analysts lack practical and intuitive knowledge of the ANC’s institutional life, complexity and informal networks. The present collection seeks to correct that balance by presenting a set of papers which focus upon the dynamics of the ANC at sub-national level, pointing the way to a more critical engagement with party processes than is usually presented

    Scientific Rationale and Requirements for a Global Seismic Network on Mars

    Get PDF
    Following a brief overview of the mission concepts for a Mars Global Network Mission as of the time of the workshop, we present the principal scientific objectives to be achieved by a Mars seismic network. We review the lessons for extraterrestrial seismology gained from experience to date on the Moon and on Mars. An important unknown on Mars is the expected rate of seismicity, but theoretical expectations and extrapolation from lunar experience both support the view that seismicity rates, wave propagation characteristics, and signal-to-noise ratios are favorable to the collection of a scientifically rich dataset during the multiyear operation of a global seismic experiment. We discuss how particular types of seismic waves will provide the most useful information to address each of the scientific objectives, and this discussion provides the basis for a strategy for station siting. Finally, we define the necessary technical requirements for the seismic stations

    Controlling for the species-area effect supports constrained long term Mesozoic terrestrial vertebrate diversification

    Get PDF
    Variation in the geographic spread of fossil localities strongly biases inferences about the evolution of biodiversity, due to the ubiquitous scaling of species richness with area. This obscures answers to key questions, such as how tetrapods attained their tremendous extant diversity. We address this problem by applying sampling-standardisation methods to spatial regions of equal size, within a global Mesozoic–early Palaeogene dataset of non-flying terrestrial tetrapods. We recover no significant increase in species richness between the Late Triassic and the Cretaceous/Palaeogene (K/Pg) boundary, strongly supporting bounded diversification in Mesozoic tetrapods. An abrupt tripling of richness in the earliest Palaeogene suggests that this diversity equilibrium was reset following the K/Pg extinction. Spatial heterogeneity in sampling is among the most important biases of fossil data, but has often been overlooked. Our results indicate that controlling for variance in geographic spread in the fossil record significantly impacts inferred patterns of diversity through time
    • …
    corecore