
Proc. R. Soc. B (2012) 279, 2180–2187

 on January 19, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
* Autho

Electron
10.1098

doi:10.1098/rspb.2011.2441

Published online 1 February 2012

Received
Accepted
Rise of dinosaurs reveals major body-size
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A major macroevolutionary question concerns how long-term patterns of body-size evolution are under-

pinned by smaller scale processes along lineages. One outstanding long-term transition is the replacement

of basal therapsids (stem-group mammals) by archosauromorphs, including dinosaurs, as the dominant

large-bodied terrestrial fauna during the Triassic (approx. 252–201 million years ago). This landmark

event preceded more than 150 million years of archosauromorph dominance. We analyse a new body-size

dataset of more than 400 therapsid and archosauromorph species spanning the Late Permian–Middle

Jurassic. Maximum-likelihood analyses indicate that Cope’s rule (an active within-lineage trend of

body-size increase) is extremely rare, despite conspicuous patterns of body-size turnover, and contrary

to proposals that Cope’s rule is central to vertebrate evolution. Instead, passive processes predominate

in taxonomically and ecomorphologically more inclusive clades, with stasis common in less inclusive

clades. Body-size limits are clade-dependent, suggesting intrinsic, biological factors are more important

than the external environment. This clade-dependence is exemplified by maximum size of Middle–early

Late Triassic archosauromorph predators exceeding that of contemporary herbivores, breaking a widely-

accepted ‘rule’ that herbivore maximum size greatly exceeds carnivore maximum size. Archosauromorph

and dinosaur dominance occurred via opportunistic replacement of therapsids following extinction, but

were facilitated by higher archosauromorph growth rates.
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1. INTRODUCTION
Body size is a trait that is fundamental to the biology of

all animals [1–3] and covaries with key ecological, phy-

siological and life-history traits such as range size,

fecundity, metabolic efficiency and thermal physiology

[4]. Body size has a complex interaction with individual

fitness [5]; larger animals are often more successful in

obtaining food, territory and mates [6,7], but are more

susceptible to extinction, and in some cases predation,

having lower fecundity, and requiring more resources

per individual [7]. One of the longest noted trends in ver-

tebrate evolution is a perceived tendency towards larger

body sizes during the evolution of a clade: Cope’s rule

[8–10]. Cope’s rule denotes an ‘active’ within-lineage

directional trend of increase, generally held to be driven

by selection for larger body size [7,11]. This results in

increasing maximum and minimum body size through

time within a clade [9]. In contrast, ‘passive diffusion’

denotes an increase in trait variance over evolutionary time

without unidirectional selection, yielding an increase in

maximum body size, but unaltered or decreasing minimum

size [12,13]. Whether ‘active’ within-lineage processes,

or ‘passive’ processes resulting from differential among-

lineage effects are responsible for large-scale patterns of
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body-size evolution in deep time is an enduring question

in evolutionary biology and palaeontology [9,14,15].

The effects of trophic interactions on body size are also

of great interest to biologists [16]. In terrestrial faunas, the

largest herbivores tend to be an order of magnitude larger

than the largest closely related carnivores [17], and body

size in carnivores and herbivores tends to correlate in

time and space [18]. However, these ecological ‘rules’ are

derived almost exclusively from the mammal-dominated

fauna of the past 65 million years (Myr), and their general

applicability has not been extensively tested.

The ca 100 Myr time span from the Late Permian

(approx. 260 million years ago (Ma)) to the Middle Jurassic

(approx. 160 Ma) provides an excellent case study of ter-

restrial vertebrate body-size evolution. This interval

witnessed the ‘rise’ of dinosaurs and other archosauro-

morphs (birds, crocodiles and their extinct relatives

including dinosaurs and pterosaurs, [19–21]) to more than

150 Myr of dominance as large-bodied terrestrial vertebra-

tes, coincident with the ‘fall’ of the previously dominant

therapsids (stem-group mammals; [22]). This landmark

transition is bracketed by two of the largest mass extinctions

in Earth’s history, at the Permo-Triassic (approx. 252.2 Ma,

[23,24]) and Triassic–Jurassic (approx. 201.5 Ma, [23,25])

boundaries [26,27]; it may be causally linked to these events,

and to smaller extinction events within the Triassic

[20,28,29]. Ornithodiran archosauromorphs included the

largest land animals (sauropod dinosaurs) and the largest

flying organisms (azhdarchid pterosaurs) ever to exist, and
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dinosaurs especially have long been icons of Cope’s rule [30].

However, other analyses of body-size evolution in dinosaurs

suggest a more complex situation [31], or the absence of

selection-driven trends [32].

We examine body-size evolution in multiple clades over

an extended time interval. Non-phylogenetic (time series)

and phylogenetically informed modelling approaches are

used to analyse more than 400 species from the two domi-

nant clades of Late Permian–Middle Jurassic terrestrial

vertebrates (Archosauromorpha and Therapsida). We test

whether the major patterns in body-size evolution that

accompanied the rise and decline of these clades (figure 1)

are the result of clade-wide, ‘active’ within-lineage, direc-

tional trends towards increased or decreased body size

(Cope’s rule and its inverse). Moreover, we investigate the

relationship between carnivore and herbivore body size

within the time interval, and discuss its implications for

the role of intrinsic, biological factors in body-size evolution.
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Figure 1. (a) Log femur length (body size proxy) of archo-
sauromorph (black triangles) and therapsid (grey circles)

taxa from the Late Permian to Middle Jurassic plotted at
the stratigraphic range midpoints for each taxon, with
Lowess (locally adjusted) regression lines for archosauro-
morphs (black) and therapsids (grey). (b) Log femur length
plotted at midpoints of stratigraphic ranges (points) and

size maxima through time (lines) of herbivorous (black,
rhomboid points) and carnivorous (grey, square points)
taxa across the interval. From the Anisian to early Norian
(light grey shading), the size of the largest carnivores
exceeded that of the largest herbivores. (c) Proportion of

archosauromorphs among archosauromorph and therapsid
taxa sampled plotted through time. Perm., Permian, E.,
Early, M., Middle, L., Late. Stage abbreviations in the
electronic supplementary material, table S2.
2. MATERIAL AND METHODS
(a) Body mass proxy data

Femoral length was used as a body size proxy because it shows

a consistent relationship with body mass in terrestrial ver-

tebrates [33], and has been used in previous studies of

archosauromorphs [31,32]. Femora have not been described

for 77 per cent of the therapsids sampled, but use of femoral

length was required to yield absolute values comparable with

those of Archosauromorpha. Thus, for many therapsids,

femoral length was estimated based on basal skull length

using regression equations (see the electronic supplementary

material). This is justified because basal skull length is tightly

correlated (R2 ¼ 0.903, p , 0.001, n¼ 26) with femoral

length for therapsids in which both were described from the

same individual.

(b) Dating

Taxa were dated to geological stage (see the electronic

supplementary material), with ranges representing either strati-

graphic uncertainty or genuine observed ranges. Most taxa

were assigned ranges based on age and formation assignments

in the Paleobiology Database (http://paleodb.org/), updated with

more recent information where appropriate. Absolute ages for

stages were based on Walker & Geissman [23].

(c) Phylogenies

Phylogenies were compiled for Archosauromorpha and

Therapsida using an informal supertree approach ([20,32,

34], see the electronic supplementary material, figures S1

and S2 and table S1). Source phylogenies were chosen for

their recentness and comprehensiveness of taxon and/or char-

acter sampling. The phylogenies were calibrated against time

(see the electronic supplementary material), with taxa assigned

absolute ages by taking the range midpoint. Unconstrained/

zero length nodes/branches were given a date/length by setting

a root length and sharing this time equally between uncon-

strained branches [19], using the date.phylo() function of

Graeme Lloyd (http://www.graemetlloyd.com/methdpf.html).

(d) Time-series model fitting

Time-series models provide an approximation of the

trajectory of mean body size within clades without reference

to phylogeny or individual evolutionary lineages. Time-series

analyses were carried out in R v. 2.13.1 [35] using the

paleoTS package [36]. Data were binned by stage, with
Proc. R. Soc. B (2012)
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taxa placed in each bin that their stratigraphic range over-

lapped. Four models—generalized random walk (GRW),

unbiased random walk (URW), an Ornstein–Uhlenbeck

(OU) process and stasis—were fitted to mean body size

and variance for each stage for 12 different clades

(Gorgonopsia was not analysed alone owing to small

sample sizes). GRW is a random walk with a non-zero step

mean, corresponding to a directional evolutionary trend.

URW is a random walk with a zero step mean corresponding

to noticeable trait variation through time, but no consistent

directional trend. An OU process is evolution towards an

optimum, which becomes exponentially less attractive as

the optimal value is neared. The Akaike information criterion

(AICc) with correction for finite sample sizes was used to cal-

culate Akaike weights and thus compare models (see the

electronic supplementary material). To make assumptions

more realistic for populations related by cladogenesis, and

because variances showed significant heteroskedasticity, var-

iances were not pooled between bins. Joint parameterization

was used for all tests. Binning with uniform 5 Myr bins was

carried out to assess sensitivity to the timescale used.

Analyses were also repeated with binned means and variances

for only the taxa present in the phylogenies to allow com-

parison with phylogenetic models (see the electronic

supplementary material).

(e) Phylogenetic model fitting

Maximum-likelihood models were used to investigate body-

size evolution [32,37]). Five models—Brownian motion

(BM) with trend, BM, stasis, OU and early burst (EB)—

were fitted to 13 clades. BM with trend is equivalent to a

GRW (see §2d) and thus approximates directional within-

lineage evolution (see [38]), BM is equivalent to an URW

(see §2d), and EB is an exponentially decreasing rate of evol-

ution through time. Model fitting was carried out in R using

the package GEIGER [39]). The five models listed above

were fitted for 13 clades. AICc was used to compare models.

Analyses were also carried out in which species were dated

using the lower bound of their stratigraphic range rather than

the midpoint to assess the sensitivity of results to inaccuracies

in dating (see the electronic supplementary material).

(f) Generalized least-squares regression of carnivore

and herbivore size

Generalized least-squares regression models were analysed in R

using the gls() function from the nlme package [40] with herbi-

vore size as a predictor of carnivore size, and compared with a

null model using AICc and Akaike weights, both with no auto-

regressive model (AR0, equivalent to ordinary least-squares

regression) and with a first-order autoregressive (AR1) model.

Data were again binned by stage.
3. RESULTS
(a) Large-scale patterns of body-size evolution

Our body-size data clearly show a sustained increase in

archosauromorph size and decrease in therapsid size over

the study interval (figure 1a). Archosauromorphs attained

large sizes only after extinction or decimation of therap-

sids of the same trophic guild. Thus, archosauromorph

carnivores increased in size after the Permian–Triassic

boundary extinction of gorgonospians (hypercarnivorous

therapsids), and archosauromorph herbivores increased

in size during the Triassic following extinction of most

anomodonts (large herbivorous therapsids; see electronic
Proc. R. Soc. B (2012)
supplementary material, figure S3). From the Anisian to

the early Norian (245–216 Ma), carnivore maximum

body size is larger than herbivore maximum body size

(figure 1b), with archosauromorphs being the largest

carnivores and therapsids the largest herbivores during

this interval.

(b) Time-series model fitting

An URW model recorded the best AICc score for both

Archosauromorpha and Therapsida. The fit of GRW

models was non-negligible, with positive (Archosauromor-

pha) and negative (Therapsida) step means (m), reflecting

long-term body-size differentiation (figure 1a). For Dino-

sauromorpha and Theropoda (predatory dinosaurs),

the GRW model fitted best, and m was higher than for

other archosauromorphs, reflecting more rapidly increas-

ing mean body size than witnessed in non-dinosaurian

archosauromorphs. An URW model fitted best for

ornithischian dinosaurs, Pterosauria, Pseudosuchia (croco-

dilians and their stem group) and Cynodontia (the derived

therapsid clade including mammals). An OU model fit-

ted best for sauropodomorphs, aetosaurs (herbivorous/

omnivorous Triassic pseudosuchians) and anomodonts,

with a higher optimum body size (u) in sauropodomorphs

(3.031 log10 mm) than anomodonts (2.484 log10 mm) or

aetosaurs (2.266 log10 mm). At least one other model was

non-negligible for all clades except Aetosauria and Pseudo-

suchia (table 1). Results using uniform 5 Myr time binning

were similar but favoured more directional models (see the

electronic supplementary material).

(c) Phylogenetic model fitting

Maximum-likelihood models of body-size evolution

demonstrate that active trends fit the phylogeny poorly

compared with other models (figure 2 and table 2; modelled

as BM with trend). BM, stasis and EB models provided

the best fit (lowest AICc scores) for most clades (BM in

Archosauromorpha, Dinosauromorpha, Theropoda and

Anomodontia; stasis in Sauropodomorpha, Ornithischia,

Aetosauria, Pterosauria and Therocephalia; EB in Pseudo-

suchia, Therapsida and Cynodontia), and an OU model

fitted best for Gorgonopsia. At least one other model was

non-negligible (Akaike weight greater than 1/8 that of the

best model) for most clades (figure 2 and table 2). Results

when lower range bounds were used as taxon ages were

qualitatively similar to those based on range midpoints

(see the electronic supplementary material).

(d) Regression of carnivore and herbivore size

A generalized least-squares regression model using herbi-

vore maximum and mean body size to predict carnivore

size substantially outperformed a null model when Ther-

apsida and Archosauromorpha were examined together

with no autoregressive model (AR0, equivalent to ordin-

ary least-squares regression, table 3). However, the null

model (though worse) was non-negligible for Archosaur-

omorpha analysed alone, and outperformed the herbivore

model for Therapsida analysed alone, suggesting incon-

sistent within-clade relationships through the study

interval. When an autoregressive model (AR1) was

implemented, the null model was best supported for

most comparisons. Under this model, a strong, significant

relationship, with substantially better (lower) AICc than

http://rspb.royalsocietypublishing.org/
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the null model was only recovered for maximum body

size, and only when considering Archosauromorpha and

Therapsida together.
4. DISCUSSION
Our phylogenetic results demonstrate that passive pro-

cesses governed body-size evolution during a major

reorganization of dominance in the terrestrial environ-

ment. Though Cope’s rule has been supported for fossil

mammals [10,42] and some dinosaurian clades [30,37],

it did not occur in all dinosaurs [31,32], including Meso-

zoic birds [43]), and no neontological studies support its

occurrence [3,44]). The results of our phylogenetic

models provide little evidence for active trends towards

higher (or lower) body sizes during the Late Permian–

Middle Jurassic interval (approx. 260–160 Ma, figure 2

and table 2), despite overall increasing mean size in arch-

osauromorphs, and decrease in therapsids (figure 1, and

demonstrated by step means in non-phylogenetic

random walk models, table 1). Within-lineage processes

do not follow Cope’s rule, or its inverse (a selection-

driven decrease in body size). Instead, large-scale patterns

are underlain by passive expansion of clades into smaller

and larger body-size niches, with relative stasis within

these niches (i.e. in less inclusive, less ecomorphologically

varied clades). Thus, apparent ‘trends’ in body-size evol-

ution resulted from changes in niche diversity, mediated

by differential among-lineage processes such as orig-

ination followed by radiations of smaller- or larger-

bodied subclades, and size-selective extinction. This

agrees with previous work finding passive trends in size

in more inclusive clades and longer time intervals and

lack of trends at smaller scales and when phylogeny is

taken into account [14,15,45].

The most inclusive clades examined—Archosauromor-

pha and Therapsida—both exhibit initial bidirectional

passive expansion from an ancestral body size close to

their absolute lower bound. Therapsid size evolution

initially occurred rapidly, but younger therapsid subclades

show relative stability, as indicated by strong support for

an EB model of therapsid body-size evolution (table 2).

Subsequent size reduction in therapsids resulted from

selective extinction of larger bodied subclades (gorgonop-

sians, anomodonts and some cynodonts), and expansion

of cynodonts into small-bodied niches. There was no

evolutionary ‘trend’ of miniaturization across multiple

lineages. Archosauromorph body-size expansion is best

modelled as BM. This contrasts with the situation in ther-

apsids, possibly owing to the delayed temporal occurrence

of archosauromorph diversification, or greater variabi-

lity in body size among archosauromorph subclades.

Indeed, archosauromorphs exhibited repeated episodes

of secondary size reduction, e.g. in drepanosauromorphs

(small, superficially lizard-like archosauromorphs), basal

pterosaurs and coelurosaurian theropod dinosaurs.

Four large and ecomorphologically varied subclades of

Archosauromorpha (Dinosauromorpha, Theropoda and

Pseudosuchia) and Therapsida (Anomodontia) favour a

BM model, reflecting passive expansion into a range of

niches. An EB model favoured for Cynodontia reflects

their early ecological diversification into larger (‘non-

probainognathan’) and smaller bodied (‘probainognathan’)

subclades. The subclades best modelled by stasis or

http://rspb.royalsocietypublishing.org/
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Figure 2. Simplified archosauromorph (top) and therapsid (bottom) phylogenies calibrated against time from the Permian to

Jurassic with Akaike weights of phylogenetic models of body-size evolution displayed as pie charts next to clades for which
analyses were carried out. Thick lines indicate observed stratigraphic range, thin lines indicate inferred range based on phylo-
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OU models have a limited ecomorphological variation

(Sauropodomorpha, Ornithischia, Pterosauria, Aetosauria,

Therocephalia and Gorgonopsia) during the study interval,

and include the least inclusive clades examined. These

clades thus exhibit the patterns expected of groups

constrained within particular niche optima by selection.

The lack of evidence for within-lineage active trends of

size increase among archosauromorphs and therapsids

sheds new light on the enduring topic of reasons for arch-

osaur and dinosaur ascent and therapsid downfall

[19,20,28,29,32,46]. A major question is whether this

replacement occurred via long-term evolutionary compe-

tition, or opportunistic replacement following chance

extinctions of therapsids [32,46,47]. Evolutionary com-

petition alone now seems unlikely for two reasons:

(i) the absence of the driven trends that would be

expected if size (in which archosauromorphs tended to

exceed therapsids) per se were advantageous, and (ii) a

delay between the decline of large-bodied therapsid pre-

dators (Gorgonopsia: extinct after the Late Permian),

and herbivores (Anomodontia: decimated following the

Carnian [32]), and the expansion of archosauromorphs

into large-body-sized predatory (erythrosuchids, pro-

terosuchids and Pseudosuchia, Early Triassic (approx.

252–245 Ma)) and herbivorous (Sauropodomorpha,

Norian-Rhaetian (approx. 228–201.6 Ma)) niches,

which suggests that contemporaneous therapsids and

archosauromorphs were rarely competing for the same

food resources. Archosauromorphs may, however, have

possessed physiological adaptations conferring an
Proc. R. Soc. B (2012)
exceptional ability to obtain large body size once

therapsids vacated key niches. For example, archosauro-

morphs possess exceptional growth rates (e.g. in

sauropodomorphs [48], later theropods [49], basal dino-

sauromorphs [50] and basal archosauriforms [51,52])

that have their origins in the Early Triassic [52], and a

heterogeneous lung ventilated by efficient unidirectional

flow [53], that is also capable of decoupling body size

from overall mass via pneumatization (in dinosaurs:

[54], and possibly more basal archosauromorphs: [55]).

Failure of therapsids to reinvade large-bodied niches fol-

lowing extinction may even be explicable by higher

growth rates and thus earlier sexual maturity in archo-

sauromorphs [52,56,57], allowing a higher reproductive

rate than in similarly sized therapsids. Prior to widespread

therapsid extinction, this reproductive advantage could

have been outweighed by the large incumbent advantage

expected under neutral macroecological models [58].

Further elevation of growth rates may also in part explain

dinosaurian ascent after extinction of many non-dino-

saurian archosauromorphs (see [20,59]): only the basal

crocodylomorph Terrestrisuchus [51] and some erythrosu-

chids [50,51] are currently known to have had growth

rates comparable to those of dinosaurs and other

ornithodirans.

Hypothesized physiological adaptations allowing higher

maximum body-size thresholds in archosauromorphs are

also supported by a unique and surprising situation

that prevailed from the Anisian to early Norian (Middle–

early Late Triassic (approx. 245-216 Ma)). During

http://rspb.royalsocietypublishing.org/
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this interval, the largest terrestrial predators (including

proterosuchid, erythrosuchid, pseudosuchian and phyto-

saurian archosauromorphs) reached maximum body sizes

that exceeded the largest terrestrial herbivores (anomodont

therapsids; figure 1b). This is inconsistent with the widely

held ecological ‘rule’, whereby body size of the largest

terrestrial herbivores should exceed that of the lar-

gest predators [17]. In fact, this ‘rule’ only applies

when the largest predators and herbivores represent a

single major clade, as in earlier (Middle–Late Permian

(approx. 271–252 Ma)) therapsid-dominated ecosystems,

and later Mesozoic (approx. 216–65.5 Ma, archosaur/

dinosaur-dominated, [17]), and Cenozoic (65.5 Ma-

present, mammal-dominated, [17,18]) times. The fact

that the relationship between herbivore and predator maxi-

mum body sizes is supported only when archosauromorph

and therapsid datasets are combined provides evidence that

maximum body sizes between guilds tracked each other

through time, regardless of affinities, suggesting co-

evolution between ecotypes. If carnivore and herbivore

maximum size were indeed linked via selection, and both

guilds experienced similar environmental regimes, then

intrinsic, biological differences provide the only remaining

explanation of relatively small body sizes of the largest

Triassic therapsid herbivores. Therapsids lacked key

physiological adaptations of archosauromorphs (e.g.

growth rates and ventilation system—see above), and

were thus constrained to smaller body sizes, regardless of

selective pressures.

Our results, spanning multiple higher clades and an

extended time interval, fundamentally question the exist-

ence of consistent long-term, within-lineage active trends

in vertebrate body-size evolution. Instead, size evolution

is underlain by passive expansion coupled with constrain-

ing selection within ecological niches, and differential

clade extinction. Within-clade body-size ranges are evolu-

tionarily limited by intrinsic physiological constraints.

Thus, archosauromorphs far exceeded the maximum

body sizes of non-mammalian therapsids. Archosauro-

morphs only entered therapsid niches once they had

been cleared by extinctions, but uniquely rapid growth

and reproductive rates may have given archosauromorphs

a competitive advantage in invading these vacated niches.

We thus support a model for the rise of archosauromorphs

and dinosaurs that was fundamentally opportunistic,

but in which intrinsic physiological differences allowed

archosauromorphs to be more successful than therapsids

in taking advantage of opportunities for diversification.
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Table 3. Summary of results for generalized least-squares regression models of carnivore maximum and mean size for both

null models and models using herbivore size to predict carnivore size. The only model robustly better than null was
maximum herbivore and carnivore size for both therapsid and archosauromorph taxa analysed together. AR1, first-order
autoregressive model implemented to remove serial correlation. Bold Akaike weight (A.W.), herbivore models of carnivore
size where null model was negligible (A.W. , 1/8 best model), bold model name, null model negligible under ordinary least
squares, bold and italicized model name, null model negligible under ordinary least squares and generalized least squares

with AR1.

carnivore clade(s)

ordinary least squares
generalized least squares
(AR1)

n
null model
A.W.

herbivore model
A.W.

null model
A.W.

herbivore model
A.W.

maximum size Therapsida1Archosauromorpha 0.0001 0.9999 0.0288 0.9712 18
Therapsida 0.7266 0.2734 0.3591 0.6409 9

Archosauromorpha 0.2952 0.7048 0.4362 0.5638 14

mean size Therapsida1Archosauromorpha 0.0003 0.9997 0.5701 0.4299 18
Therapsida 0.6075 0.3925 0.8821 0.1179 9
Archosauromorpha 0.2222 0.7778 0.8781 0.1219 14
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