866 research outputs found

    Celebrate Your Plate: Nutrition Education Through Social Marketing

    Get PDF
    The State Nutrition Action Committee (SNAC) was created in 2007 to bring together several health- and community-based organizations throughout the state of Ohio including SNAP-Ed, EFNEP, Department of Aging, Department of Education, Department of Health including WIC, Creating Healthy Communities and the Early Childhood Obesity Prevention Program, Department of Aging, Department of Job and Family Services, and the Mid-Ohio Foodbank. SNAC's aim is to promote shared goals and collaborate on related programming efforts. In the spring of 2016, SNAC decided to embark on a social marketing campaign together. SNAP-Ed facilitates the partnership between The Ohio State University and the program assistants (PAs), program coordinators (PCs) and FCS educators who are in 80 of Ohio's 88 counties delivering direct education and community programming. The SNAP-Ed social marketing campaign, Celebrate Your Plate (CYP), will support existing direct education programming across the state and encourage low-income audiences to increase their fruit and vegetable consumption. Social marketing is defined as "the application of commercial marketing technologies to the analysis, planning, execution, and evaluation of programs designed to influence voluntary behavior of target audiences to improve their personal welfare and that of society." (Andreasen, 1995). Work on a SNAP-Ed social marketing campaign began in early 2016 with the formation of the Social Marketing Core Team (SMCT) and the development of a campaign plan with the members of SNAC. The objectives of the SNAP-Ed social marketing campaign are as follows: 1) Plan, design, implement, and evaluate a social marketing campaign that increases fruit and vegetable consumption in low-income audiences by supporting the existing OSU Extension SNAP-Ed direct education program. 2) Create and document the processes of the social marketing campaign and its pilot and staged implementation throughout Ohio. Formative research was conducted during the summer of 2016 to inform the direction of the campaign; and a marketing agency, Fahlgren Mortine, was hired through the Ohio State University bid process to handle materials development and media purchasing. Data from formative research informed the direction of the campaign and determined the tone of the campaign, media approaches, and material design. Based on results from the pilot, a selection of marketing materials will be used in different quadrants across the state during the next two years. Fruit and vegetable consumption is the dietary guideline with the lowest achievement rate among all Ohioans. Celebrate Your Plate will facilitate additional partnerships to advance health and wellness through increasing fruit and vegetable consumption.AUTHOR AFFILIATION: Alisha Ferguson, SNAP-Ed Program Assistant, Social Marketing, [email protected] (Corresponding Author); Beth Hustead, SNAP-Ed Program Coordinator, Social Marketing; B.R. Butler, FCS Program Evaluation Director; K.L. Golis, OSU Nutrition Program Graduate Research Associate; A.C. Zubieta, SNAP-Ed Director.The State Nutrition Action Committee (SNAC) was created in 2007 to bring together several health and community-based organizations throughout the state of Ohio. SNAC's aim is to promote shared goals and collaborate on related programming efforts. For 10 years, SNAC has given committee members the opportunity to work together, connect with other public health and nutrition organizations, and create new and meaningful projects such as a social marketing campaign. Work on a SNAP-Ed social marketing campaign, Celebrate Your Plate, began in early 2016 with the formation of the Social Marketing Core Team (SMCT) and the development of a campaign plan with the members of SNAC. With fruit and vegetable consumption the dietary guideline with the lowest achievement rate among all Ohioans, it is important for Celebrate Your Plate to create more partnerships to advance health and wellness

    Higher Order Polarizabilities of the Proton

    Get PDF
    Compton scattering results are used to probe proton structure via measurement of higher order polarizabilities. Values for αE2p,βE2p,αEνp,\alpha_{E2}^p,\beta_{E2}^p,\alpha_{E\nu}^p, βEνp\beta_{E\nu}^p determined via dispersion relations are compared to predictions based upon chiral symmetry and from the constituent quark model. Extensions to spin-polarizabilities are also discussed.Comment: 18 pages, revised version with one reference adde

    Compton Scattering and the Spin Structure of the Nucleon at Low Energies

    Get PDF
    We analyze polarized Compton scattering which provides information on the spin-structure of the nucleon. For scattering processes with photon energies up to 100 MeV the spin-structure dependence can be encoded into four independent parameters-the so-called spin-polarizabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon, which we calculate within the framework of the "small scale expansion" in SU(2) baryon chiral perturbation theory. Specific application is made to "forward" and "backward" spin- polarizabilities.Comment: 8 pages revtex file, separation between pion-pole and regular contributions detailed + minor wording changes, results and conclusions unchange

    Pion and Sigma Polarizabilities and Radiative Transitions

    Get PDF
    Fermilab E781 plans measurements of gamma-Sigma and γ\gamma-pion interactions using a 600 GeV beam of Sigmas and pions, and a virtual photon target. Pion polarizabilities and radiative transitions will be measured in this experiment. The former can test a precise prediction of chiral symmetry; the latter for a_1(1260) ----> pi + gamma is important for understanding the polarizability. The experiment also measures polarizabilities and radiative transitions for Sigma hyperons. The polarizabilities can test predictions of baryon chiral perturbation theory. The radiative transitions to the Sigma*(1385) provide a measure of the magnetic moment of the s-quark. Previous experimental and theoretical results for gamma-pi and gamma-Sigma interactions are given. The E781 experiment is described.Comment: 13 pages text (tex), Tel Aviv U. Preprint TAUP 2204-94, uses Springer-Verlag TEX macro package lecproc.cmm (appended at end of tex file, following \byebye), which requires extracting lecproc.cmm and putting this file in your directory in addition to the tex file (mmcd.tex) before tex processing. lecproc.cmm should be used following instructions and guidelines available from Springer-Verlag. Submitted to the Proceedings of Workshop on Chiral Dynamics, Massachusetts Institute of Technology, July 1994, Eds. A. Bernstein, B. Holstein. Replaced Oct. 4 to add TAUP preprint number. Replaced Oct. 12 to correct Pb target thickness from 1.3% interaction to 0.3

    NN,N\Delta Couplings and the Quark Model

    Get PDF
    We examine mass-corrected SU(6) symmetry predictions in the quark model relating vector, axial-vector and strong NN and N\Delta couplings, and demonstrate that the experimental N\Delta value is significantly higher than predicted in each case. Nevertheless the Goldberger-Treiman relation is satisfied in both sectors. Possible origins of the discrepancy of the quark model predictions with experiment are discussed.Comment: 22 pg. Latex file, figures available by reques

    Biosignatures from Earth-Like Planets Around M Dwarfs

    Full text link
    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible, near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs, AD Leo and GJ 643, and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.Comment: 34 pages, 10 figures, Astrobiology, in pres

    Search for Λc+pK+π\Lambda_c^+ \to p K^+ \pi^- and Ds+K+K+πD_s^+ \to K^+ K^+ \pi^- Using Genetic Programming Event Selection

    Full text link
    We apply a genetic programming technique to search for the double Cabibbo suppressed decays Λc+pK+π\Lambda_c^+ \to p K^+ \pi^- and Ds+K+K+πD_s^+ \to K^+ K^+ \pi^-. We normalize these decays to their Cabibbo favored partners and find BR(\text{BR}(\Lambda_c^+ \to p K^+ \pi^-)/BR()/\text{BR}(\Lambda_c^+ \to p K^- \pi^+)=(0.05±0.26±0.02)) = (0.05 \pm 0.26 \pm 0.02)% and BR(\text{BR}(D_s^+ \to K^+ K^+ \pi^-)/BR()/\text{BR}(D_s^+ \to K^+ K^- \pi^+)=(0.52±0.17±0.11)) = (0.52\pm 0.17\pm 0.11)% where the first errors are statistical and the second are systematic. Expressed as 90% confidence levels (CL), we find <0.46< 0.46 % and <0.78 < 0.78% respectively. This is the first successful use of genetic programming in a high energy physics data analysis.Comment: 10 page

    Measurement of the D+ and Ds+ decays into K+K-K+

    Full text link
    We present the first clear observation of the doubly Cabibbo suppressed decay D+ --> K-K+K+ and the first observation of the singly Cabibbo suppressed decay Ds+ --> K-K+K+. These signals have been obtained by analyzing the high statistics sample of photoproduced charm particles of the FOCUS(E831) experiment at Fermilab. We measure the following relative branching ratios: Gamma(D+ --> K-K+K+)/Gamma(D+ --> K-pi+pi+) = (9.49 +/- 2.17(statistical) +/- 0.22(systematic))x10^-4 and Gamma(Ds+ --> K-K+K+)/Gamma(Ds+ --> K-K+pi+) = (8.95 +/- 2.12(statistical) +2.24(syst.) -2.31(syst.))x10^-3.Comment: 10 pages, 8 figure

    A Non-parametric Approach to the D+ to K*0bar mu+ nu Form Factors

    Full text link
    Using a large sample of D+ -> K- pi+ mu+ nu decays collected by the FOCUS photoproduction experiment at Fermilab, we present the first measurements of the helicity basis form factors free from the assumption of spectroscopic pole dominance. We also present the first information on the form factor that controls the s-wave interference discussed in a previous paper by the FOCUS collaboration. We find reasonable agreement with the usual assumption of spectroscopic pole dominance and measured form factor ratios.Comment: 14 pages, 5 figures, and 2 tables. We updated the previous version by changing some words, removing one plot, and adding two tables. These changes are mostly stylisti

    Dalitz plot analysis of D_s+ and D+ decay to pi+pi-pi+ using the K-matrix formalism

    Full text link
    FOCUS results from Dalitz plot analysis of D_s+ and D+ to pi+pi-pi+ are presented. The K-matrix formalism is applied to charm decays for the first time to fully exploit the already existing knowledge coming from the light-meson spectroscopy experiments. In particular all the measured dynamics of the S-wave pipi scattering, characterized by broad/overlapping resonances and large non-resonant background, can be properly included. This paper studies the extent to which the K-matrix approach is able to reproduce the observed Dalitz plot and thus help us to understand the underlying dynamics. The results are discussed, along with their possible implications on the controversial nature of the sigma meson.Comment: To be submitted to Phys.Lett.B A misprint corrected in formula
    corecore