147 research outputs found

    Eyes on the future: buffering increased costs of incubation by abandoning offspring

    Get PDF
    Life history theory states that the resources invested in current reproduction must be traded off against resources needed for survival and future reproduction. Long-lived organisms have a higher residual reproductive value and are therefore expected to be sensitive to reproductive investments that may reduce survival and future reproduction. Individuals within a population may vary in phenotypic quality, experience, access to resources etc. This may affect their optimal reproductive investment level. In this study we manipulated reproductive costs by shortening and extending the incubation period in common eiders Somateria mollissima without altering clutch size. Females whose incubation time was prolonged experimentally, suffered higher mass loss and increased clutch loss/nest desertion. These females were also more prone to abandon their brood after hatching. Both clutch loss and brood abandonment decreased with clutch size in all treatment categories, indicating higher phenotypic quality and/or better access to resources for females producing more eggs. However, although females with prolonged incubation were lighter at hatching, their return rate and breeding performance in the following year were unaffected. These results show that individual quality as expressed through clutch size and body mass is affecting current reproductive investment level as well as future survival and breeding performance. The results also show that individual birds are sensitive to changes in their own condition, and when reproductive effort is approaching a level where survival or future survival may be compromised, they respond by terminating their current reproductive attempt. body mass, common eider, cost of reproduction, parental effort, reproductive value, trade-off.publishedVersio

    Temporal Trends of Organochlorine and Perfluorinated Contaminants in a Terrestrial Raptor in Northern Europe Over 34 years (1986–2019)

    Get PDF
    Fourteen legacy organochlorine (OC) contaminants and 12 perfluoroalkyl substances (PFASs) were measured in eggs of tawny owls (Strix alueco) in central Norway (1986–2019). We expected OCs to have reached stable equilibrium levels due to bans, and that recent phase-out of some PFASs would have slowed the increase of these compounds. ∑OC comprised on average approximately 92% of the measured compounds, whereas ∑PFAS accounted for approximately 8%. However, whereas the ∑OC to ∑PFAS ratio was approximately 60 in the first 5 years of the study, it was only approximately 11 in the last 5 years. Both OC pesticides and polychlorinated biphenyls (PCBs) showed substantial declines over the study period (~85%–98%): hexachlorocyclohexanes and chlordanes seemed to be levelling off, whereas p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and hexachlororbenzene (HCB), and most PCB congeners still seemed to decline at a more or less constant rate. While the concentration of perfluorooctane sulfonic acid (PFOS), the dominating PFAS, was reduced by approximately 43%, other perfluorinated sulfonates (PFSAs) showed only minor changes. Moreover, the median concentrations of seven perfluorinated carboxylic acids (PFCAs) increased approximately five-fold over the study period. Perfluorononanoic acid and perfluoroundecanoate acid, however, seemed to be levelling off in recent years. In contrast, perfluorododecanoic acid, perfluorodecanoate acid, perfluorotridecanoic acid, and perfluorotetradecanoic acid seemed to increase more or less linearily. Finally, perfluorooctanoic acid (PFOA) was increasingly likely to be detected over the study period. Hence, most legacy OCs and PFOS have not reached a lower threshold with stable background levels, and voluntary elimination of perfluoroalkyl carboxylates still has not resulted in declining levels in tawny owls in central Norway

    Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to perfluoroalkyl carboxylic acids

    Get PDF
    International audiencePerfluoroalkyl and polyfluoroalkyl substances (PFASs) may cause detrimental effects on physiological function and reproduction of Arctic animals. However, there is a paucity of information on the link between PFASs and oxidative stress, which can have potential detrimental effects on key fitness traits, such as cellular homeostasis or reproduction. We have examined the correlations between multiple blood-based markers of oxidative status and several perfluoroalkyl acids (i.e., with 8 or more carbons) in male Arctic black-legged kittiwakes (Rissa tridactyla) during the pre-laying period. Higher protein oxidative damage was found in those birds having higher concentrations of perfluorododecanoic acid (PFDoA), perfluorotridecanoic acid (PFTriA) and perfluorotetradecanoic acid (PFTeA). Lower plasmatic non-enzymatic micro-molecular antioxidants were found in those birds having higher concentrations of perfluoroundecanoic acid (PFUnA), PFDoA and PFTeA. Effect size estimates showed that the significant correlations between PFASs and oxidative status markers were intermediate to strong. The non-enzymatic antioxidant capacity (including antioxidants of protein origin) was significantly lower in those birds having higher plasma concentration of linear perfluorooctanesulfonic acid (PFOSlin). In contrast, the activity of the antioxidant enzyme glutathione peroxidase in erythrocytes was not associated with any PFAS compounds. Our results suggest that increased oxidative stress might be one consequence of long-chain PFASexposure. Experimental work will be needed to demonstrate whether PFASs cause toxic effects on free-living vertebrates through increased oxidative stress

    Feather corticosterone levels on wintering grounds have no carry-over effects on breeding among three populations of great skuas (<i>Stercorarius skua</i>)

    Get PDF
    Environmental conditions encountered by migratory seabirds in their wintering areas can shape their fitness. However, the underlying physiological mechanisms remain largely unknown as birds are relatively inaccessible during winter. To assess physiological condition during this period, we measured corticosterone concentrations in winter-grown primary feathers of female great skuas (Stercorarius skua) from three breeding colonies (Bjørnøya, Iceland, Shetland) with wintering areas identified from characteristic stable isotope signatures. We subsequently compared winter feather corticosterone levels between three wintering areas (Africa, Europe and America). Among females breeding in 2009, we found significant differences in feather corticosterone levels between wintering areas. Surprisingly, levels were significantly higher in Africa despite seemingly better local ecological factors (based on lower foraging effort). Moreover, contrary to our predictions, females sharing the same wintering grounds showed significant differences in feather corticosterone levels depending on their colony of origin suggesting that some skuas could be using suboptimal wintering areas. Among females wintering in Africa, Shetland females showed feather corticosterone levels on average 22% lower than Bjørnøya and Iceland females. Finally, the lack of significant relationships between winter feather corticosterone levels and any of the breeding phenology traits does not support the hypothesis of potential carry-over effects of winter feather corticosterone. Yet, the fitness consequences of elevated feather corticosterone levels remain to be determined

    Within and between breeding-season changes in contaminant occurrence and body condition in the Antarctic breeding south polar skua

    Get PDF
    The Antarctic ecosystem represents a remote region far from point sources of pollution. Still, Antarctic marine predators, such as seabirds, are exposed to organohalogen contaminants (OHCs) which may induce adverse health effects. With increasing restrictions and regulations on OHCs, the levels and exposure are expected to decrease over time. We studied south polar skua (Catharacta maccormicki), a top predator seabird, to compare OHC concentrations measured in whole blood from 2001/2002 and 2013/2014 in Dronning Maud Land. As a previous study found increasing organochlorine concentrations with sampling day during the 2001/2002 breeding season, suggesting dietary changes, we investigated if this increase was repeated in the 2013/2014 breeding season. In addition to organochlorines, we analyzed hydroxy-metabolites, brominated contaminants and per- and polyfluoroalkyl substances (PFAS) in 2013/2014, as well as dietary descriptors of stable isotopes of carbon and nitrogen, to assess potential changes in diet during breeding. Lipid normalized concentrations of individual OHCs were 63%, 87% and 105% higher for hexachlorobenzene (HCB), 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene (p,p'-DDE), and ∑Polychlorinated biphenyls (PCBs), respectively, in 2013/2014 compared to 2001/2002. South polar skuas males in 2013/2014 were in poorer body condition than in 2001/2002, and with higher pollutant levels. Poorer body condition may cause the remobilization of contaminants from stored body reserves, and continued exposure to legacy contaminants at overwintering areas may explain the unexpected higher OHC concentrations in 2013/2014 than 2001/2002. Concentrations of protein-associated PFAS increased with sampling day during the 2013/2014 breeding season, whereas the lipid-soluble chlorinated pesticides, PCBs and polybrominated diphenyl ether (PBDEs) showed no change. OHC occurrence was not correlated with stable isotopes. The PFAS biomagnification through the local food web at the colony should be investigated further

    The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats

    Get PDF
    To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999–2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes δ13C and δ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and γ-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,p′-dichlorodiphenyltrichloroethane (p.p′-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to δ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with δ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with δ13C, whereas there were no associations with δ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes

    Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects?

    Get PDF
    The present study examined how climate changes may impact the concentrations of lipophilic organochlorines (OCs) in the blood of fasting High Arctic common eiders (Somateria mollissima) during incubation. Polychlorinated biphenyls (PCBs), 1-dichloro-2,2-bis (p-chlorophenyl) ethylene (p,p′-DDE), hexachlorobenzene (HCB) and four chlordane compounds (oxychlordane, trans-chlordane and trans- and cis-nonachlor) were measured in females at chick hatching (n = 223) over 11 years (2007–2017). Firstly, median HCB and p,p′-DDE concentrations increased ~75 % over the study period, whereas median chlordane concentrations doubled (except for oxychlordane). PCB concentrations, in contrast, remained stable over the study period. Secondly, both body mass and clutch size were negatively associated with OC levels, suggesting that females with high lipid metabolism redistributed more OCs from adipose tissue, and that egg production is an important elimination route for OCs. Thirdly, the direct climate effects were assessed using the mean effective temperature (ET: air temperature and wind speed) during incubation, and we hypothesized that a low ET would increase redistribution of OCs. Contrary to expectation, the ET was positively correlated to most OCs, suggesting that a warmer climate may lead to higher OCs levels, and that the impact of ET may not be direct. Finally, potential indirect impacts were examined using the Arctic Oscillation (AO) in the three preceding winters (AOwinter 1–3) as a proxy for potential long-range transport of OCs, and for local spring climate conditions. In addition, we used chlorophyll a (Chla) as a measure of spring primary production. There were negative associations between AOwinter 1 and HCB, trans-chlordane and trans-nonachlor, whereas oxychlordane and cis-chlordane were negatively associated with Chla. This suggests that potential indirect climate effects on eiders were manifested through the food chain and not through increased long-range transport, although these relationships were relatively weak.Impacts of a warming climate on concentrations of organochlorines in a fasting high arctic marine bird: Direct vs. indirect effects?publishedVersio
    • …
    corecore