197 research outputs found

    Mendelian Susceptibility to Mycobacterial Disease in Egyptian Children

    Get PDF
    <p><strong>Background</strong>: Tuberculosis remains a major health problem in developing countries especially with the emergence of multidrug resistant strains. Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a rare disorder with impaired immunity against mycobacterial pathogens. Reported MSMD etiologies highlight the crucial role of the Interferon gamma /Interleukin 12 (IFN-g/ IL-12) axis and the phagocyte respiratory burst axis.</p><p><strong>Purpose: </strong>Screen patients with possible presentations for MSMD.<strong></strong></p><p><strong>Methods</strong>: Patients with disseminated BCG infection following vaccination, atypical mycobacterial infections or recurrent tuberculosis infections were recruited from the Primary Immune Deficiency Clinic at Cairo University Specialized Pediatric Hospital, Egypt and immune and genetic laboratory investigations were conducted at Human Genetic of Infectious Diseases laboratory in Necker Medical School, France from 2005-2009. IFN-g level in patient’s plasma as well as mutations in the eight previously identified MSMD-causing genes were explored.</p><p><strong>Results:</strong> Nine cases from eight (unrelated) kindreds were evaluated in detail. We detected a high level of IFN-g in plasma in one patient. Through Sanger sequencing, a homozygous mutation in the <em>IFNGR1</em> gene at position 485 corresponding to an amino acid change from serine to phenylalanine (S485F), was detected in this patient.</p><p><strong>Conclusion:</strong> We report the first identified cases of MSMD among Egyptian patients, including in particular a new IFNGR1 mutation underlying IFN-gR1 deficiency. The eight remaining patients need to be explored further. These findings have implications regarding the compulsory Bacillus Calmette Guerin vaccination policy in Egypt, especially given the high consanguinity rate.</p><p><strong>Keywords:</strong> Interferon gamma axis, mycobacterium tuberculosis, BCG, consanguinity<strong></strong></p&gt

    Transient Decrease of Circulating and Tissular Dendritic Cells in Patients With Mycobacterial Disease and With Partial Dominant IFN\u3b3R1 Deficiency

    Get PDF
    Interferon-\u3b3 receptor 1 (IFN\u3b3R1) deficiency is one of the inborn errors of IFN-\u3b3 immunity underlying Mendelian Susceptibility to Mycobacterial Disease (MSMD). This molecular circuit plays a crucial role in regulating the interaction between dendritic cells (DCs) and T lymphocytes, thus affecting DCs activation, maturation, and priming of T cells involved in the immune response against intracellular pathogens. We studied a girl who developed at the age of 2.5 years a Mycobacterium avium infection characterized by disseminated necrotizing granulomatous lymphadenitis, and we compared her findings with other patients with the same genetic condition. The patient carried a heterozygous 818del4 mutation in the IFNGR1 gene responsible of autosomal dominant (AD) partial IFN\u3b3R1 deficiency. During the acute infection blood cells immunophenotyping showed a marked reduction in DCs counts, including both myeloid (mDCs) and plasmacytoid (pDCs) subsets, that reversed after successful prolonged antimicrobial therapy. Histology of her abdomen lymph node revealed a profound depletion of tissue pDCs, as compared to other age-matched granulomatous lymphadenitis of mycobacterial origin. Circulating DCs depletion was also observed in another patient with AD partial IFN\u3b3R1 deficiency during mycobacterial infection. To conclude, AD partial IFN\u3b3R1 deficiency can be associated with a transient decrease in both circulating and tissular DCs during acute mycobacterial infection, suggesting that DCs counts monitoring might constitute a useful marker of treatment response

    Complementation of a pathogenic IFNGR2 misfolding mutation with modifiers of N-glycosylation

    Get PDF
    Germline mutations may cause human disease by various mechanisms. Missense and other in-frame mutations may be deleterious because the mutant proteins are not correctly targeted, do not function correctly, or both. We studied a child with mycobacterial disease caused by homozygosity for a novel in-frame microinsertion in IFNGR2. In cells transfected with the mutant allele, most of the interferon γ receptor 2 (IFN-γR2) protein was retained within the cell, and that expressed on the cell surface had an abnormally high molecular weight (MW). The misfolding mutation was not gain-of-glycosylation, as it created no new N-glycosylation site. The mutant IFNGR2 allele was null, as the patient's cells did not respond to IFN-γ. Based on the well-established relationship between protein N-glycosylation and protein quality control processes, we tested 29 compounds affecting maturation by N-glycosylation in the secretory pathway. Remarkably, up to 13 of these compounds reduced the MW of surface-expressed mutant IFN-γR2 molecules and restored cellular responsiveness to IFN-γ. Modifiers of N-glycosylation may therefore complement human cells carrying in-frame and misfolding, but not necessarily gain-of-glycosylation, mutations in genes encoding proteins subject to trafficking via the secretory pathway. Some of these compounds are available for clinical use, paving the way for clinical trials of chemical complementation for various human genetic traits

    Alu-repeat–induced deletions within the NCF2 gene causing p67- phox –deficient chronic granulomatous disease (CGD)

    Full text link
    Mutations that impair expression or function of the components of the phagocyte NADPH oxidase complex cause chronic granulomatous disease (CGD), which is associated with life-threatening infections and dysregulated granulomatous inflammation. In five CGD patients from four consanguineous families of two different ethnic backgrounds, we found similar genomic homozygous deletions of 1,380 bp comprising exon 5 of NCF2 , which could be traced to Alu-mediated recombination events. cDNA sequencing showed in-frame deletions of phase zero exon 5, which encodes one of the tandem repeat motifs in the tetratricopeptide (TPR4) domain of p67- phox . The resulting shortened protein (p67Δ5) had a 10-fold reduced intracellular half-life and was unable to form a functional NADPH oxidase complex. No dominant negative inhibition of oxidase activity by p67Δ5 was observed. We conclude that Alu-induced deletion of the TPR4 domain of p67- phox leads to loss of function and accelerated degradation of the protein, and thus represents a new mechanism causing p67- phox –deficient CGD. Hum Mutat 30:1–8, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64904/1/21156_ftp.pd

    A partial form of inherited human USP18 deficiency underlies infection and inflammation

    Get PDF
    International audienceHuman USP18 is an interferon (IFN)-stimulated gene product and a negative regulator of type I IFN (IFN-I) signaling. It also removes covalently linked ISG15 from proteins, in a process called deISGylation. In turn, ISG15 prevents USP18 from being degraded by the proteasome. Autosomal recessive complete USP18 deficiency is life-threatening in infancy owing to uncontrolled IFN-I–mediated autoinflammation. We report three Moroccan siblings with autoinflammation and mycobacterial disease who are homozygous for a new USP18 variant. We demonstrate that the mutant USP18 (p.I60N) is normally stabilized by ISG15 and efficient for deISGylation but interacts poorly with the receptor-anchoring STAT2 and is impaired in negative regulation of IFN-I signaling. We also show that IFN-γ–dependent induction of IL-12 and IL-23 is reduced owing to IFN-I–mediated impairment of myeloid cells to produce both cytokines. Thus, insufficient negative regulation of IFN-I signaling by USP18-I60N underlies a specific type I interferonopathy, which impairs IL-12 and IL-23 production by myeloid cells, thereby explaining predisposition to mycobacterial disease

    Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells

    No full text
    Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell–dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10– and IL-21–mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21–induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.This work was funded by project and program grants from the National Health and Medical Research Council (NHMRC) of Australia (to E.K. Deenick, C.S. Ma, D.A. Fulcher, M.C. Cook, and S.G. Tangye) and the Rockefeller University Center for 541 Clinical and Translational science (5UL1RR024143 to J.L. Casanova). C.S. Ma is a recipient of a Career Development Fellowship, L.J. Berglund is a recipient of a Medical Postgraduate Scholarship, and S.G. Tangye is a recipient of a Principal Research Fellowship from the NHMRC of Australia. L. Moens is the recipient of a Postdoctoral Fellowship from the Research Foundation-Flanders (FWO), Belgium

    X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production

    Get PDF
    Germline mutations in five autosomal genes involved in interleukin (IL)-12–dependent, interferon (IFN)-γ–mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)–MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-κB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell–dependent IL-12 production, resulting in defective IFN-γ secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-κB/c-Rel–mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-κB activators, such as tumor necrosis factor-α, IL-1β, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell– and CD40L-triggered, CD40-, and NEMO/NF-κB/c-Rel–mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans

    Systemic Type I IFN Inflammation in Human ISG15 Deficiency Leads to Necrotizing Skin Lesions

    Get PDF
    Most monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications. Herein, we describe five new patients with six novel ISG15 mutations presenting with skin lesions who were managed for dermatologic disease. Cellularly, we denote striking specificity to the IFN-I response, which was previously assumed to be universal. In peripheral blood, myeloid cells display the most robust IFN-I signatures. In the affected skin, IFN-I signaling is observed in the keratinocytes of the epidermis, endothelia, and the monocytes and macrophages of the dermis. These findings define the specific cells causing circulating and dermatologic inflammation and expand the clinical spectrum of ISG15 deficiency to dermatologic presentations as a third phenotype co-dominant to the infectious and neurologic manifestations.Fil: Martin Fernandez, Marta. Icahn School Of Medicine At Mount Sinai; Estados Unidos. King Saud University; Arabia SauditaFil: Bravo García Morato, María. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Gruber, Conor. Icahn School Of Medicine At Mount Sinai; Estados Unidos. King Saud University; Arabia SauditaFil: Murias Loza, Sara. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Malik, Muhammad Nasir Hayat. Twincore; Alemania. University Of Lahore; Países Bajos. Leibniz Universitat Hannover; Alemania. Helmholtz Gemeinschaft; AlemaniaFil: Alsohime, Fahad. King Saud University; Arabia SauditaFil: Alakeel, Abdullah. King Saud University; Arabia SauditaFil: Valdez, Rita. Gobierno de la Ciudad Autónoma de Buenos Aires. Hospital General de Agudos Doctor Cosme Argerich; ArgentinaFil: Buta, Sofija. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Buda, Guadalupe. Bitgenia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Biología Celular e Histología; ArgentinaFil: Marti, Marcelo Adrian. Bitgenia; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Biología Celular e Histología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Larralde, Margarita. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Boisson, Bertrand. L'institut Des Maladies Génétiques Imagine; Francia. The Rockefeller University; Estados Unidos. Universite de Paris; FranciaFil: Feito Rodriguez, Marta. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Qiu, Xueer. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Chrabieh, Maya. L'institut Des Maladies Génétiques Imagine; FranciaFil: Al Ayed, Mohammed. Najran University; Arabia SauditaFil: Al Muhsen, Saleh. King Saud University; Arabia SauditaFil: Desai, Jigar V.. National Institutes of Health; Estados UnidosFil: Ferre, Elise M.N.. National Institutes of Health; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health; Estados UnidosFil: Amador-Borrero, Blanca. Icahn School Of Medicine At Mount Sinai; Estados UnidosFil: Bravo-Gallego, Luz Yadira. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Olmer, Ruth. Hannover Medical School; Alemania. German Center for Lung Research; AlemaniaFil: Merkert, Sylvia. Hannover Medical School; Alemania. German Center for Lung Research; AlemaniaFil: Bret, Montserrat. Instituto de Investigacion del Hospital de la Paz.; EspañaFil: Sood, Amika K.. University of North Carolina; Estados UnidosFil: Al-rabiaah, Abdulkarim. King Saud University; Arabia SauditaFil: Temsah, Mohamad Hani. King Saud University; Arabia SauditaFil: Halwani, Rabih. University of Sharjah; Emiratos Arabes UnidosFil: Hernandez, Michelle Marilyn. University of North Carolina; Estados UnidosFil: Pessler, Frank. Twincore; Alemania. Helmholtz Centre for Infection Research; AlemaniaFil: Casanova, Jean Laurent. The Rockefeller University; Estados Unidos. Necker Hospital for Sick Children; Francia. Howard Hughes Medical Institute; Estados Unidos. Universite de Paris; FranciaFil: Bustamante, Jacinta. The Rockefeller University; Estados Unidos. Necker Hospital for Sick Children; Francia. Universite de Paris; FranciaFil: Lionakis, Michail S.. National Institutes of Health; Estados UnidosFil: Bogunovic, Dusan. Icahn School Of Medicine At Mount Sinai; Estados Unido

    Regulation of human CD4+ T cell differentiation

    Get PDF
    Naive CD4+ T cells differentiate into specific effector subsets—Th1, Th2, Th17, and T follicular helper (Tfh)—that provide immunity against pathogen infection. The signaling pathways involved in generating these effector cells are partially known. However, the effects of mutations underlying human primary immunodeficiencies on these processes, and how they compromise specific immune responses, remain unresolved. By studying individuals with mutations in key signaling pathways, we identified nonredundant pathways regulating human CD4+ T cell differentiation in vitro. IL12Rβ1/TYK2 and IFN-γR/STAT1 function in a feed-forward loop to induce Th1 cells, whereas IL-21/IL-21R/STAT3 signaling is required for Th17, Tfh, and IL-10–secreting cells. IL12Rβ1/TYK2 and NEMO are also required for Th17 induction. Strikingly, gain-of-function STAT1 mutations recapitulated the impact of dominant-negative STAT3 mutations on Tfh and Th17 cells, revealing a putative inhibitory effect of hypermorphic STAT1 over STAT3. These findings provide mechanistic insight into the requirements for human T cell effector function, and explain clinical manifestations of these immunodeficient conditions. Furthermore, they identify molecules that could be targeted to modulate CD4+ T cell effector function in the settings of infection, vaccination, or immune dysregulation

    Low Penetrance, Broad Resistance, and Favorable Outcome of Interleukin 12 Receptor β1 Deficiency: Medical and Immunological Implications

    Get PDF
    The clinical phenotype of interleukin 12 receptor β1 chain (IL-12Rβ1) deficiency and the function of human IL-12 in host defense remain largely unknown, due to the small number of patients reported. We now report 41 patients with complete IL-12Rβ1 deficiency from 17 countries. The only opportunistic infections observed, in 34 patients, were of childhood onset and caused by weakly virulent Salmonella or Mycobacteria (Bacille Calmette-Guérin -BCG- and environmental Mycobacteria). Three patients had clinical tuberculosis, one of whom also had salmonellosis. Unlike salmonellosis, mycobacterial infections did not recur. BCG inoculation and BCG disease were both effective against subsequent environmental mycobacteriosis, but not against salmonellosis. Excluding the probands, seven of the 12 affected siblings have remained free of case-definition opportunistic infection. Finally, only five deaths occurred in childhood, and the remaining 36 patients are alive and well. Thus, a diagnosis of IL-12Rβ1 deficiency should be considered in children with opportunistic mycobacteriosis or salmonellosis; healthy siblings of probands and selected cases of tuberculosis should also be investigated. The overall prognosis is good due to broad resistance to infection and the low penetrance and favorable outcome of infections. Unexpectedly, human IL-12 is redundant in protective immunity against most microorganisms other than Mycobacteria and Salmonella. Moreover, IL-12 is redundant for primary immunity to Mycobacteria and Salmonella in many individuals and for secondary immunity to Mycobacteria but not to Salmonella in most
    corecore